Artigos de revistas sobre o tema "Cas9-tagging"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Cas9-tagging".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Thöne, Fabian M. B., Nina S. Kurrle, Harald von Melchner e Frank Schnütgen. "CRISPR/Cas9-mediated generic protein tagging in mammalian cells". Methods 164-165 (julho de 2019): 59–66. http://dx.doi.org/10.1016/j.ymeth.2019.02.018.
Texto completo da fonteWang, Qiang, e Jeffrey J. Coleman. "CRISPR/Cas9-mediated endogenous gene tagging in Fusarium oxysporum". Fungal Genetics and Biology 126 (maio de 2019): 17–24. http://dx.doi.org/10.1016/j.fgb.2019.02.002.
Texto completo da fonteLin, Da-Wei, Benjamin P. Chung, Jia-Wei Huang, Xiaorong Wang, Lan Huang e Peter Kaiser. "Microhomology-based CRISPR tagging tools for protein tracking, purification, and depletion". Journal of Biological Chemistry 294, n.º 28 (28 de maio de 2019): 10877–85. http://dx.doi.org/10.1074/jbc.ra119.008422.
Texto completo da fonteBeneke, Tom, Ulrich Dobramysl, Carolina Moura Costa Catta-Preta, Jeremy Charles Mottram, Eva Gluenz e Richard Wheeler. "Genome sequence of Leishmania mexicana MNYC/BZ/62/M379 expressing Cas9 and T7 RNA polymerase". Wellcome Open Research 7 (5 de dezembro de 2022): 294. http://dx.doi.org/10.12688/wellcomeopenres.18575.1.
Texto completo da fonteBeneke, Tom, Ulrich Dobramysl, Carolina Moura Costa Catta-Preta, Jeremy Charles Mottram, Eva Gluenz e Richard J. Wheeler. "Genome sequence of Leishmania mexicana MNYC/BZ/62/M379 expressing Cas9 and T7 RNA polymerase". Wellcome Open Research 7 (23 de fevereiro de 2023): 294. http://dx.doi.org/10.12688/wellcomeopenres.18575.2.
Texto completo da fonteHarazi, A., L. Yakovlev e S. Mitrani-Rosenbaum. "P.248CRISPR-Cas9 tagging allows the detection of endogenous gne in mice". Neuromuscular Disorders 29 (outubro de 2019): S139. http://dx.doi.org/10.1016/j.nmd.2019.06.362.
Texto completo da fonteLi, Pan, Lijun Zhang, Zhifang Li, Chunlong Xu, Xuguang Du e Sen Wu. "Cas12a mediates efficient and precise endogenous gene tagging via MITI: microhomology-dependent targeted integrations". Cellular and Molecular Life Sciences 77, n.º 19 (17 de dezembro de 2019): 3875–84. http://dx.doi.org/10.1007/s00018-019-03396-8.
Texto completo da fonteCalverley, Ben C., Karl E. Kadler e Adam Pickard. "Dynamic High-Sensitivity Quantitation of Procollagen-I by Endogenous CRISPR-Cas9 NanoLuciferase Tagging". Cells 9, n.º 9 (10 de setembro de 2020): 2070. http://dx.doi.org/10.3390/cells9092070.
Texto completo da fonteKovářová, Julie, Markéta Novotná, Joana Faria, Eva Rico, Catriona Wallace, Martin Zoltner, Mark C. Field e David Horn. "CRISPR/Cas9-based precision tagging of essential genes in bloodstream form African trypanosomes". Molecular and Biochemical Parasitology 249 (maio de 2022): 111476. http://dx.doi.org/10.1016/j.molbiopara.2022.111476.
Texto completo da fonteBlaeser, Anthony R., Pei Lu e Qi Long Lu. "347. Tagging FKRP and LARGE by CRISPR/Cas9 for Monitoring Expression and Localization". Molecular Therapy 23 (maio de 2015): S138. http://dx.doi.org/10.1016/s1525-0016(16)33956-9.
Texto completo da fonteNitika e Andrew W. Truman. "Endogenous epitope tagging of heat shock protein 70 isoform Hsc70 using CRISPR/Cas9". Cell Stress and Chaperones 23, n.º 3 (24 de setembro de 2017): 347–55. http://dx.doi.org/10.1007/s12192-017-0845-2.
Texto completo da fonteTorres-Garcia, Sito, Lorenza Di Pompeo, Luke Eivers, Baptiste Gaborieau, Sharon A. White, Alison L. Pidoux, Paulina Kanigowska, Imtiyaz Yaseen, Yizhi Cai e Robin C. Allshire. "SpEDIT: A fast and efficient CRISPR/Cas9 method for fission yeast". Wellcome Open Research 5 (24 de novembro de 2020): 274. http://dx.doi.org/10.12688/wellcomeopenres.16405.1.
Texto completo da fonteMatsuda, Takahiko, e Izumi Oinuma. "Imaging endogenous synaptic proteins in primary neurons at single-cell resolution using CRISPR/Cas9". Molecular Biology of the Cell 30, n.º 22 (15 de outubro de 2019): 2838–55. http://dx.doi.org/10.1091/mbc.e19-04-0223.
Texto completo da fonteRoberts, Brock, Amanda Haupt, Andrew Tucker, Tanya Grancharova, Joy Arakaki, Margaret A. Fuqua, Angelique Nelson et al. "Systematic gene tagging using CRISPR/Cas9 in human stem cells to illuminate cell organization". Molecular Biology of the Cell 28, n.º 21 (15 de outubro de 2017): 2854–74. http://dx.doi.org/10.1091/mbc.e17-03-0209.
Texto completo da fonteMorrow, Christopher S., Tiaira J. Porter e Darcie L. Moore. "Fluorescent tagging of endogenous proteins with CRISPR/Cas9 in primary mouse neural stem cells". STAR Protocols 2, n.º 3 (setembro de 2021): 100744. http://dx.doi.org/10.1016/j.xpro.2021.100744.
Texto completo da fonteLyu, Qing, Vidhi Dhagia, Yu Han, Bing Guo, Mary E. Wines-Samuelson, Christine K. Christie, Qiangzong Yin et al. "CRISPR-Cas9–Mediated Epitope Tagging Provides Accurate and Versatile Assessment of Myocardin—Brief Report". Arteriosclerosis, Thrombosis, and Vascular Biology 38, n.º 9 (setembro de 2018): 2184–90. http://dx.doi.org/10.1161/atvbaha.118.311171.
Texto completo da fonteCheng, Tian-Lin, e Zilong Qiu. "Long non-coding RNA tagging and expression manipulation via CRISPR/Cas9-mediated targeted insertion". Protein & Cell 9, n.º 9 (5 de setembro de 2017): 820–25. http://dx.doi.org/10.1007/s13238-017-0464-9.
Texto completo da fonteAoto, Kazushi, Shuji Takabayashi, Hiroki Mutoh e Hirotomo Saitsu. "Generation of Flag/DYKDDDDK Epitope Tag Knock-In Mice Using i-GONAD Enables Detection of Endogenous CaMKIIα and β Proteins". International Journal of Molecular Sciences 23, n.º 19 (7 de outubro de 2022): 11915. http://dx.doi.org/10.3390/ijms231911915.
Texto completo da fonteLi, Weicheng, Yaoyao Zhang, Katy Moffat, Venugopal Nair e Yongxiu Yao. "V5 and GFP Tagging of Viral Gene pp38 of Marek’s Disease Vaccine Strain CVI988 Using CRISPR/Cas9 Editing". Viruses 14, n.º 2 (21 de fevereiro de 2022): 436. http://dx.doi.org/10.3390/v14020436.
Texto completo da fonteLeonetti, Manuel D., Sayaka Sekine, Daichi Kamiyama, Jonathan S. Weissman e Bo Huang. "A scalable strategy for high-throughput GFP tagging of endogenous human proteins". Proceedings of the National Academy of Sciences 113, n.º 25 (6 de junho de 2016): E3501—E3508. http://dx.doi.org/10.1073/pnas.1606731113.
Texto completo da fonteWege, Sarah-Maria, Katharina Gejer, Fabienne Becker, Michael Bölker, Johannes Freitag e Björn Sandrock. "Versatile CRISPR/Cas9 Systems for Genome Editing in Ustilago maydis". Journal of Fungi 7, n.º 2 (18 de fevereiro de 2021): 149. http://dx.doi.org/10.3390/jof7020149.
Texto completo da fontePapasavva, Panayiota L., Petros Patsali, Constantinos C. Loucari, Ryo Kurita, Yukio Nakamura, Marina Kleanthous e Carsten W. Lederer. "CRISPR Editing Enables Consequential Tag-Activated MicroRNA-Mediated Endogene Deactivation". International Journal of Molecular Sciences 23, n.º 3 (19 de janeiro de 2022): 1082. http://dx.doi.org/10.3390/ijms23031082.
Texto completo da fonteLi, Qingyun, Scott Barish, Sumie Okuwa e Pelin C. Volkan. "Examination of Endogenous Rotund Expression and Function in DevelopingDrosophilaOlfactory System Using CRISPR-Cas9–Mediated Protein Tagging". G3: Genes|Genomes|Genetics 5, n.º 12 (23 de outubro de 2015): 2809–16. http://dx.doi.org/10.1534/g3.115.021857.
Texto completo da fonteWillems, Jelmer, Arthur P. H. de Jong, Nicky Scheefhals, Eline Mertens, Lisa A. E. Catsburg, Rogier B. Poorthuis, Fred de Winter, Joost Verhaagen, Frank J. Meye e Harold D. MacGillavry. "ORANGE: A CRISPR/Cas9-based genome editing toolbox for epitope tagging of endogenous proteins in neurons". PLOS Biology 18, n.º 4 (10 de abril de 2020): e3000665. http://dx.doi.org/10.1371/journal.pbio.3000665.
Texto completo da fonteBeneke, Tom, Ross Madden, Laura Makin, Jessica Valli, Jack Sunter e Eva Gluenz. "A CRISPR Cas9 high-throughput genome editing toolkit for kinetoplastids". Royal Society Open Science 4, n.º 5 (maio de 2017): 170095. http://dx.doi.org/10.1098/rsos.170095.
Texto completo da fonteHan, Jeong Pil, Yoo Jin Chang, Dong Woo Song, Beom Seok Choi, Ok Jae Koo, Seung Youn Yi, Tae Sub Park e Su Cheong Yeom. "High Homology-Directed Repair Using Mitosis Phase and Nucleus Localizing Signal". International Journal of Molecular Sciences 21, n.º 11 (26 de maio de 2020): 3747. http://dx.doi.org/10.3390/ijms21113747.
Texto completo da fonteHou, Yuqing, Xi Cheng e George B. Witman. "Direct in situ protein tagging in Chlamydomonas reinhardtii utilizing TIM, a method for CRISPR/Cas9-based targeted insertional mutagenesis". PLOS ONE 17, n.º 12 (9 de dezembro de 2022): e0278972. http://dx.doi.org/10.1371/journal.pone.0278972.
Texto completo da fonteMészár, Zoltán, Éva Kókai, Rita Varga, László Ducza, Tamás Papp, Monika Béresová, Marianna Nagy, Péter Szücs e Angelika Varga. "CRISPR/Cas9-Based Mutagenesis of Histone H3.1 in Spinal Dynorphinergic Neurons Attenuates Thermal Sensitivity in Mice". International Journal of Molecular Sciences 23, n.º 6 (15 de março de 2022): 3178. http://dx.doi.org/10.3390/ijms23063178.
Texto completo da fonteLander, Noelia, Miguel A. Chiurillo, Melissa Storey, Anibal E. Vercesi e Roberto Docampo. "CRISPR/Cas9-mediated endogenous C-terminal Tagging ofTrypanosoma cruziGenes Reveals the Acidocalcisome Localization of the Inositol 1,4,5-Trisphosphate Receptor". Journal of Biological Chemistry 291, n.º 49 (28 de outubro de 2016): 25505–15. http://dx.doi.org/10.1074/jbc.m116.749655.
Texto completo da fonteKuri, Paola, Nicole L. Schieber, Thomas Thumberger, Joachim Wittbrodt, Yannick Schwab e Maria Leptin. "Dynamics of in vivo ASC speck formation". Journal of Cell Biology 216, n.º 9 (12 de julho de 2017): 2891–909. http://dx.doi.org/10.1083/jcb.201703103.
Texto completo da fonteThakare, Swapnil S., Navita Bansal, S. Vanchinathan, G. Rama Prashat, Veda Krishnan, Archana Sachdev, Shelly Praveen e T. Vinutha. "GFP tagging based method to analyze the genome editing efficiency of CRISPR/Cas9-gRNAs through transient expression in N. benthamiana". Journal of Plant Biochemistry and Biotechnology 29, n.º 2 (15 de novembro de 2019): 183–92. http://dx.doi.org/10.1007/s13562-019-00540-0.
Texto completo da fonteLeong, Shwee Khuan, Jye-Chian Hsiao e Jiun-Jie Shie. "A Multiscale Molecular Dynamic Analysis Reveals the Effect of Sialylation on EGFR Clustering in a CRISPR/Cas9-Derived Model". International Journal of Molecular Sciences 23, n.º 15 (6 de agosto de 2022): 8754. http://dx.doi.org/10.3390/ijms23158754.
Texto completo da fonteNaeimi Kararoudi, Meisam, Shibi Likhite, Ezgi Elmas, Maura Schwartz, Kinnari Sorathia, Kenta Yamamoto, Nitin Chakravarti, Branden S. Moriarity, Kathrin Meyer e Dean Anthony Lee. "CD33 Targeting Primary CAR-NK Cells Generated By CRISPR Mediated Gene Insertion Show Enhanced Anti-AML Activity". Blood 136, Supplement 1 (5 de novembro de 2020): 3. http://dx.doi.org/10.1182/blood-2020-142494.
Texto completo da fonteNie, Zheng-Wen, Ying-Jie Niu, Wenjun Zhou, Dong-Jie Zhou, Ju-Yeon Kim e Xiang-Shun Cui. "AGS3-dependent trans-Golgi network membrane trafficking is essential for compaction in mouse embryos". Journal of Cell Science 133, n.º 23 (4 de novembro de 2020): jcs243238. http://dx.doi.org/10.1242/jcs.243238.
Texto completo da fonteDonlin-Asp, Paul G., Claudio Polisseni, Robin Klimek, Alexander Heckel e Erin M. Schuman. "Differential regulation of local mRNA dynamics and translation following long-term potentiation and depression". Proceedings of the National Academy of Sciences 118, n.º 13 (26 de março de 2021): e2017578118. http://dx.doi.org/10.1073/pnas.2017578118.
Texto completo da fonteWąchalska, Magda, Małgorzata Graul, Patrique Praest, Rutger D. Luteijn, Aleksandra W. Babnis, Emmanuel J. H. J. Wiertz, Krystyna Bieńkowska-Szewczyk e Andrea D. Lipińska. "Fluorescent TAP as a Platform for Virus-Induced Degradation of the Antigenic Peptide Transporter". Cells 8, n.º 12 (7 de dezembro de 2019): 1590. http://dx.doi.org/10.3390/cells8121590.
Texto completo da fonteWall, Richard J., Eva Rico, Iva Lukac, Fabio Zuccotto, Sara Elg, Ian H. Gilbert, Yvonne Freund et al. "Clinical and veterinary trypanocidal benzoxaboroles target CPSF3". Proceedings of the National Academy of Sciences 115, n.º 38 (5 de setembro de 2018): 9616–21. http://dx.doi.org/10.1073/pnas.1807915115.
Texto completo da fonteKöhler, Simone, Michal Wojcik, Ke Xu e Abby F. Dernburg. "Superresolution microscopy reveals the three-dimensional organization of meiotic chromosome axes in intact Caenorhabditis elegans tissue". Proceedings of the National Academy of Sciences 114, n.º 24 (30 de maio de 2017): E4734—E4743. http://dx.doi.org/10.1073/pnas.1702312114.
Texto completo da fonteRaghuram, Viswanathan, Karim Salhadar, Kavee Limbutara, Euijung Park, Chin-Rang Yang e Mark A. Knepper. "Protein kinase A catalytic-α and catalytic-β proteins have nonredundant regulatory functions". American Journal of Physiology-Renal Physiology 319, n.º 5 (1 de novembro de 2020): F848—F862. http://dx.doi.org/10.1152/ajprenal.00383.2020.
Texto completo da fonteGraustein, Andrew, Elizabeth A. Misch, Munyaradzi Musvosvi, Muki Shey, Javeed Shah, Rick Wells, Willem Hanekom, Mark Hatherill, Thomas Scriba e Thomas Hawn. "HSP90B1 Regulates TLR-dependent Monocyte Signaling and its Common Variants are Associated with BCG-specific T-cell Responses and Protection from Pediatric TB Disease". Journal of Immunology 196, n.º 1_Supplement (1 de maio de 2016): 200.18. http://dx.doi.org/10.4049/jimmunol.196.supp.200.18.
Texto completo da fonteAlok, Anshu, Hanny Chauhan, Santosh Kumar Upadhyay, Ashutosh Pandey, Jitendra Kumar e Kashmir Singh. "Compendium of Plant-Specific CRISPR Vectors and Their Technical Advantages". Life 11, n.º 10 (28 de setembro de 2021): 1021. http://dx.doi.org/10.3390/life11101021.
Texto completo da fonteAvagyan, Serine, Jonathan E. Henninger, William P. Mannherz, Meeta Mistry, Song P. Yang, Margaret Weber, Jessica Moore e Leonard I. Zon. "Mosaic Mutagenesis In Vivo Reveals Mutant Blood Stem Cells Intrinsically Resistant to Inflammatory Mediators in Clonal Hematopoiesis". Blood 136, Supplement 1 (5 de novembro de 2020): 27. http://dx.doi.org/10.1182/blood-2020-140903.
Texto completo da fontePantier, Raphaël, Tülin Tatar, Douglas Colby e Ian Chambers. "Endogenous epitope-tagging of Tet1, Tet2 and Tet3 identifies TET2 as a naïve pluripotency marker". Life Science Alliance 2, n.º 5 (outubro de 2019): e201900516. http://dx.doi.org/10.26508/lsa.201900516.
Texto completo da fonteAvagyan, Serine, Jonathan E. Henninger, William P. Mannherz, Meeta Mistry, Song Yang, Margaret C. Weber, Jessica Moore e Leonard I. Zon. "Loss of nr4a1 abrogates Fitness of asxl1-mutant Hematopoietic Clones". Blood 138, Supplement 1 (5 de novembro de 2021): 3272. http://dx.doi.org/10.1182/blood-2021-149731.
Texto completo da fonteSnijders, Kirsten E., Anita Fehér, Zsuzsanna Táncos, István Bock, Annamária Téglási, Linda van den Berk, Marije Niemeijer et al. "Fluorescent tagging of endogenous Heme oxygenase-1 in human induced pluripotent stem cells for high content imaging of oxidative stress in various differentiated lineages". Archives of Toxicology 95, n.º 10 (4 de setembro de 2021): 3285–302. http://dx.doi.org/10.1007/s00204-021-03127-8.
Texto completo da fonteKesavan, Gokul, Anja Machate e Michael Brand. "CRISPR/Cas9-Based Split Fluorescent Protein Tagging". Zebrafish, 7 de setembro de 2021. http://dx.doi.org/10.1089/zeb.2021.0031.
Texto completo da fonteDewari, Pooran Singh, Benjamin Southgate, Katrina Mccarten, German Monogarov, Eoghan O'Duibhir, Niall Quinn, Ashley Tyrer et al. "An efficient and scalable pipeline for epitope tagging in mammalian stem cells using Cas9 ribonucleoprotein". eLife 7 (11 de abril de 2018). http://dx.doi.org/10.7554/elife.35069.
Texto completo da fonteBaker, Oliver, Ashish Gupta, Mandy Obst, Youming Zhang, Konstantinos Anastassiadis, Jun Fu e A. Francis Stewart. "RAC-tagging: Recombineering And Cas9-assisted targeting for protein tagging and conditional analyses". Scientific Reports 6, n.º 1 (24 de maio de 2016). http://dx.doi.org/10.1038/srep25529.
Texto completo da fonteLackner, Daniel H., Alexia Carré, Paloma M. Guzzardo, Carina Banning, Ramu Mangena, Tom Henley, Sarah Oberndorfer et al. "A generic strategy for CRISPR-Cas9-mediated gene tagging". Nature Communications 6, n.º 1 (dezembro de 2015). http://dx.doi.org/10.1038/ncomms10237.
Texto completo da fonteGutierrez-Triana, Jose Arturo, Tinatini Tavhelidse, Thomas Thumberger, Isabelle Thomas, Beate Wittbrodt, Tanja Kellner, Kerim Anlas, Erika Tsingos e Joachim Wittbrodt. "Efficient single-copy HDR by 5’ modified long dsDNA donors". eLife 7 (29 de agosto de 2018). http://dx.doi.org/10.7554/elife.39468.
Texto completo da fonte