Artigos de revistas sobre o tema "Cataboliti"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Cataboliti".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Kräutler, Bernhard. "Chlorophyll Breakdown – How Chemistry Has Helped to Decipher a Striking Biological Enigma". Synlett 30, n.º 03 (31 de outubro de 2018): 263–74. http://dx.doi.org/10.1055/s-0037-1611063.
Texto completo da fonteD’Alessandro, C., E. Colombini, G. Pasquariello, G. Sbragia e A. Cupisti. "Compliance Alla Terapia Dietetica". Giornale di Clinica Nefrologica e Dialisi 22, n.º 4 (31 de janeiro de 2018): 2–5. http://dx.doi.org/10.33393/gcnd.2010.1235.
Texto completo da fonteDjapic, Nina. "Chlorophyll catabolism in Prunus serrulata autumnal leaves". Facta universitatis - series: Physics, Chemistry and Technology 10, n.º 1 (2012): 21–26. http://dx.doi.org/10.2298/fupct1201021d.
Texto completo da fonteCampbell III, John, Gary R. Bender e Robert E. Marquis. "Barotolerant variant of Streptococcus faecalis with reduced sensitivity to glucose catabolite repression". Canadian Journal of Microbiology 31, n.º 7 (1 de julho de 1985): 644–50. http://dx.doi.org/10.1139/m85-121.
Texto completo da fonteCooper, T. G., R. Rai e H. S. Yoo. "Requirement of upstream activation sequences for nitrogen catabolite repression of the allantoin system genes in Saccharomyces cerevisiae". Molecular and Cellular Biology 9, n.º 12 (dezembro de 1989): 5440–44. http://dx.doi.org/10.1128/mcb.9.12.5440-5444.1989.
Texto completo da fonteCooper, T. G., R. Rai e H. S. Yoo. "Requirement of upstream activation sequences for nitrogen catabolite repression of the allantoin system genes in Saccharomyces cerevisiae." Molecular and Cellular Biology 9, n.º 12 (dezembro de 1989): 5440–44. http://dx.doi.org/10.1128/mcb.9.12.5440.
Texto completo da fonteBahar, Masoud, John de Majnik, Margaret Wexler, Judith Fry, Philip S. Poole e Peter J. Murphy. "A Model for the Catabolism of Rhizopine in Rhizobium leguminosarum Involves a Ferredoxin Oxygenase Complex and the Inositol Degradative Pathway". Molecular Plant-Microbe Interactions® 11, n.º 11 (novembro de 1998): 1057–68. http://dx.doi.org/10.1094/mpmi.1998.11.11.1057.
Texto completo da fontePlatt, Thomas G., James D. Bever e Clay Fuqua. "A cooperative virulence plasmid imposes a high fitness cost under conditions that induce pathogenesis". Proceedings of the Royal Society B: Biological Sciences 279, n.º 1734 (23 de novembro de 2011): 1691–99. http://dx.doi.org/10.1098/rspb.2011.2002.
Texto completo da fonteBerthon, Céline, Michaela Fontenay, Selim Corm, Isabelle Briche, Michel Lhermitte e Bruno Quesnel. "Metabolites of Tryptophan Catabolism Are Elevated in Sera of Patients with Myelodysplastic Syndromes and Inhibit Hematopoietic Progenitor Amplification". Blood 120, n.º 21 (16 de novembro de 2012): 3843. http://dx.doi.org/10.1182/blood.v120.21.3843.3843.
Texto completo da fonteCunningham, T. S., e T. G. Cooper. "Expression of the DAL80 gene, whose product is homologous to the GATA factors and is a negative regulator of multiple nitrogen catabolic genes in Saccharomyces cerevisiae, is sensitive to nitrogen catabolite repression". Molecular and Cellular Biology 11, n.º 12 (dezembro de 1991): 6205–15. http://dx.doi.org/10.1128/mcb.11.12.6205-6215.1991.
Texto completo da fonteCunningham, T. S., e T. G. Cooper. "Expression of the DAL80 gene, whose product is homologous to the GATA factors and is a negative regulator of multiple nitrogen catabolic genes in Saccharomyces cerevisiae, is sensitive to nitrogen catabolite repression." Molecular and Cellular Biology 11, n.º 12 (dezembro de 1991): 6205–15. http://dx.doi.org/10.1128/mcb.11.12.6205.
Texto completo da fonteLITTLE, Chris B., Carl R. FLANNERY, Clare E. HUGHES, John S. MORT, Peter J. ROUGHLEY, Colin DENT e Bruce CATERSON. "Aggrecanase versus matrix metalloproteinases in the catabolism of the interglobular domain of aggrecan in vitro". Biochemical Journal 344, n.º 1 (8 de novembro de 1999): 61–68. http://dx.doi.org/10.1042/bj3440061.
Texto completo da fonteSalvachúa, Davinia, Allison Z. Werner, Isabel Pardo, Martyna Michalska, Brenna A. Black, Bryon S. Donohoe, Stefan J. Haugen et al. "Outer membrane vesicles catabolize lignin-derived aromatic compounds in Pseudomonas putida KT2440". Proceedings of the National Academy of Sciences 117, n.º 17 (3 de abril de 2020): 9302–10. http://dx.doi.org/10.1073/pnas.1921073117.
Texto completo da fontePalavecino, Marcos D., Susana R. Correa-García e Mariana Bermúdez-Moretti. "Genes of Different Catabolic Pathways Are Coordinately Regulated by Dal81 in Saccharomyces cerevisiae". Journal of Amino Acids 2015 (17 de setembro de 2015): 1–8. http://dx.doi.org/10.1155/2015/484702.
Texto completo da fonteRichardson, Jason S., Michael F. Hynes e Ivan J. Oresnik. "A Genetic Locus Necessary for Rhamnose Uptake and Catabolism in Rhizobium leguminosarum bv. trifolii". Journal of Bacteriology 186, n.º 24 (15 de dezembro de 2004): 8433–42. http://dx.doi.org/10.1128/jb.186.24.8433-8442.2004.
Texto completo da fonteYebra, Mar�a Jes�s, Manuel Z��iga, Sophie Beaufils, Gaspar P�rez-Mart�nez, Josef Deutscher e Vicente Monedero. "Identification of a Gene Cluster Enabling Lactobacillus casei BL23 To Utilize myo-Inositol". Applied and Environmental Microbiology 73, n.º 12 (20 de abril de 2007): 3850–58. http://dx.doi.org/10.1128/aem.00243-07.
Texto completo da fonteBÜTTNER, Frank H., Clare E. HUGHES, Daniel MARGERIE, Andrea LICHTE, Harald TSCHESCHE, Bruce CATERSON e Eckart BARTNIK. "Membrane type 1 matrix metalloproteinase (MT1-MMP) cleaves the recombinant aggrecan substrate rAgg1mut at the ‘aggrecanase’ and the MMP sites". Biochemical Journal 333, n.º 1 (1 de julho de 1998): 159–65. http://dx.doi.org/10.1042/bj3330159.
Texto completo da fonteWargo, Matthew J., e Deborah A. Hogan. "Identification of genes required for Pseudomonas aeruginosa carnitine catabolism". Microbiology 155, n.º 7 (1 de julho de 2009): 2411–19. http://dx.doi.org/10.1099/mic.0.028787-0.
Texto completo da fonteBianco, Riccardo Lo, e Mark Rieger. "Partitioning of Sorbitol and Sucrose Catabolism within Peach Fruit". Journal of the American Society for Horticultural Science 127, n.º 1 (janeiro de 2002): 115–21. http://dx.doi.org/10.21273/jashs.127.1.115.
Texto completo da fonteShevchik, Vladimir E., e Nicole Hugouvieux-Cotte-Pattat. "PaeX, a Second Pectin Acetylesterase of Erwinia chrysanthemi 3937". Journal of Bacteriology 185, n.º 10 (15 de maio de 2003): 3091–100. http://dx.doi.org/10.1128/jb.185.10.3091-3100.2003.
Texto completo da fonteMazzoni, Alessio, Manuela Capone, Matteo Ramazzotti, Anna Vanni, Luca Giovanni Locatello, Oreste Gallo, Raffaele De Palma et al. "IL4I1 Is Expressed by Head–Neck Cancer-Derived Mesenchymal Stromal Cells and Contributes to Suppress T Cell Proliferation". Journal of Clinical Medicine 10, n.º 10 (13 de maio de 2021): 2111. http://dx.doi.org/10.3390/jcm10102111.
Texto completo da fonteSantos, Pedro Miguel, Janet Martha Blatny, Ilaria Di Bartolo, Svein Valla e Elisabetta Zennaro. "Physiological Analysis of the Expression of the Styrene Degradation Gene Cluster in Pseudomonas fluorescensST". Applied and Environmental Microbiology 66, n.º 4 (1 de abril de 2000): 1305–10. http://dx.doi.org/10.1128/aem.66.4.1305-1310.2000.
Texto completo da fonteXu, Yan-mei, Xian-mei Xiao, Ze-xiang Zeng, Xiao-li Tan, Zong-li Liu, Jian-wen Chen, Xin-guo Su e Jian-ye Chen. "BrTCP7 Transcription Factor Is Associated with MeJA-Promoted Leaf Senescence by Activating the Expression of BrOPR3 and BrRCCR". International Journal of Molecular Sciences 20, n.º 16 (14 de agosto de 2019): 3963. http://dx.doi.org/10.3390/ijms20163963.
Texto completo da fonteCurran, Timothy M., Yousheng Ma, Glen C. Rutherford e Robert E. Marquis. "Turning on and turning off the arginine deiminase system in oral streptococci". Canadian Journal of Microbiology 44, n.º 11 (1 de novembro de 1998): 1078–85. http://dx.doi.org/10.1139/w98-106.
Texto completo da fonteHirooka, Kazutake, Yusuke Kodoi, Takenori Satomura e Yasutaro Fujita. "Regulation of therhaEWRBMAOperon Involved in l-Rhamnose Catabolism through Two Transcriptional Factors, RhaR and CcpA, in Bacillus subtilis". Journal of Bacteriology 198, n.º 5 (28 de dezembro de 2015): 830–45. http://dx.doi.org/10.1128/jb.00856-15.
Texto completo da fonteKaysen, G. A., E. Hoye e H. Jones. "Apolipoprotein AI levels are increased in part as a consequence of reduced catabolism in nephrotic rats". American Journal of Physiology-Renal Physiology 268, n.º 3 (1 de março de 1995): F532—F540. http://dx.doi.org/10.1152/ajprenal.1995.268.3.f532.
Texto completo da fonteMondanelli, Giada, Elena Orecchini, Claudia Volpi, Eleonora Panfili, Maria Laura Belladonna, Maria Teresa Pallotta, Simone Moretti, Roberta Galarini, Susanna Esposito e Ciriana Orabona. "Effect of Probiotic Administration on Serum Tryptophan Metabolites in Pediatric Type 1 Diabetes Patients". International Journal of Tryptophan Research 13 (janeiro de 2020): 117864692095664. http://dx.doi.org/10.1177/1178646920956646.
Texto completo da fonteRichardson, Jason S., e Ivan J. Oresnik. "l-Rhamnose Transport Is Sugar Kinase (RhaK) Dependent in Rhizobium leguminosarum bv. trifolii". Journal of Bacteriology 189, n.º 23 (21 de setembro de 2007): 8437–46. http://dx.doi.org/10.1128/jb.01032-07.
Texto completo da fonteHirose, Jun, Ryusei Tsukimata, Munetoshi Miyatake e Haruhiko Yokoi. "Identification of the Gene Responsible for Lignin-Derived Low-Molecular-Weight Compound Catabolism in Pseudomonas sp. Strain LLC-1". Genes 11, n.º 12 (27 de novembro de 2020): 1416. http://dx.doi.org/10.3390/genes11121416.
Texto completo da fonteShimizu, Tetsu, e Akira Nakamura. "Characterization of LgnR, an IclR family transcriptional regulator involved in the regulation of l-gluconate catabolic genes in Paracoccus sp. 43P". Microbiology 160, n.º 3 (1 de março de 2014): 623–34. http://dx.doi.org/10.1099/mic.0.074286-0.
Texto completo da fonteXu, Yanyan, Haojie Jiang, Li Li, Fengwu Chen, Yunxia Liu, Meiyi Zhou, Ji Wang et al. "Branched-Chain Amino Acid Catabolism Promotes Thrombosis Risk by Enhancing Tropomodulin-3 Propionylation in Platelets". Circulation 142, n.º 1 (7 de julho de 2020): 49–64. http://dx.doi.org/10.1161/circulationaha.119.043581.
Texto completo da fonteLewis, Christopher, Raghavan Chinnadurai e Jacques Galipeau. "Mesenchymal stromal cell immunomodulation and aryl hydrocarbon receptor activation by tryptophan catabolites (IRM9P.462)". Journal of Immunology 194, n.º 1_Supplement (1 de maio de 2015): 130.7. http://dx.doi.org/10.4049/jimmunol.194.supp.130.7.
Texto completo da fonteMartinez, Betsy, Jeffrey Tomkins, Lawrence P. Wackett, Rod Wing e Michael J. Sadowsky. "Complete Nucleotide Sequence and Organization of the Atrazine Catabolic Plasmid pADP-1 from Pseudomonassp. Strain ADP". Journal of Bacteriology 183, n.º 19 (1 de outubro de 2001): 5684–97. http://dx.doi.org/10.1128/jb.183.19.5684-5697.2001.
Texto completo da fonteChow, Virginia, Guang Nong e James F. Preston. "Structure, Function, and Regulation of the Aldouronate Utilization Gene Cluster from Paenibacillus sp. Strain JDR-2". Journal of Bacteriology 189, n.º 24 (5 de outubro de 2007): 8863–70. http://dx.doi.org/10.1128/jb.01141-07.
Texto completo da fonteHorswill, Alexander R., e Jorge C. Escalante-Semerena. "Salmonella typhimurium LT2 Catabolizes Propionate via the 2-Methylcitric Acid Cycle". Journal of Bacteriology 181, n.º 18 (15 de setembro de 1999): 5615–23. http://dx.doi.org/10.1128/jb.181.18.5615-5623.1999.
Texto completo da fonteJanes, Brian K., e Robert A. Bender. "Alanine Catabolism in Klebsiella aerogenes: Molecular Characterization of the dadAB Operon and Its Regulation by the Nitrogen Assimilation Control Protein". Journal of Bacteriology 180, n.º 3 (1 de fevereiro de 1998): 563–70. http://dx.doi.org/10.1128/jb.180.3.563-570.1998.
Texto completo da fonteJunghans, R. P., e T. A. Waldmann. "Metabolism of Tac (IL2Ralpha): physiology of cell surface shedding and renal catabolism, and suppression of catabolism by antibody binding." Journal of Experimental Medicine 183, n.º 4 (1 de abril de 1996): 1587–602. http://dx.doi.org/10.1084/jem.183.4.1587.
Texto completo da fonteSomerville, Greg A., Battouli Saïd-Salim, Jaala M. Wickman, Sandra J. Raffel, Barry N. Kreiswirth e James M. Musser. "Correlation of Acetate Catabolism and Growth Yield in Staphylococcus aureus: Implications for Host-Pathogen Interactions". Infection and Immunity 71, n.º 8 (agosto de 2003): 4724–32. http://dx.doi.org/10.1128/iai.71.8.4724-4732.2003.
Texto completo da fonteShin, Byung-Sik, Soo-Keun Choi, Issar Smith e Seung-Hwan Park. "Analysis of tnrA Alleles Which Result in a Glucose-Resistant Sporulation Phenotype in Bacillus subtilis". Journal of Bacteriology 182, n.º 17 (1 de setembro de 2000): 5009–12. http://dx.doi.org/10.1128/jb.182.17.5009-5012.2000.
Texto completo da fonteBreiden, Bernadette, e Konrad Sandhoff. "Mechanism of Secondary Ganglioside and Lipid Accumulation in Lysosomal Disease". International Journal of Molecular Sciences 21, n.º 7 (7 de abril de 2020): 2566. http://dx.doi.org/10.3390/ijms21072566.
Texto completo da fonteTomás-Gallardo, Laura, Eduardo Santero e Belén Floriano. "Involvement of a Putative Cyclic AMP Receptor Protein (CRP)-Like Binding Sequence and a CRP-Like Protein in Glucose-Mediated Catabolite Repression ofthnGenes in Rhodococcus sp. Strain TFB". Applied and Environmental Microbiology 78, n.º 15 (25 de maio de 2012): 5460–62. http://dx.doi.org/10.1128/aem.00700-12.
Texto completo da fontePoole, P. S., A. Blyth, C. J. Reid e K. Walters. "myo-Inositol catabolism and catabolite regulation in Rhizobium leguminosarum bv. viciae". Microbiology 140, n.º 10 (1 de outubro de 1994): 2787–95. http://dx.doi.org/10.1099/00221287-140-10-2787.
Texto completo da fonteMu, Yang, Qing Chen, Rebecca E. Parales, Zhenmei Lu, Qing Hong, Jian He, Jiguo Qiu e Jiandong Jiang. "Bacterial catabolism of nicotine: Catabolic strains, pathways and modules". Environmental Research 183 (abril de 2020): 109258. http://dx.doi.org/10.1016/j.envres.2020.109258.
Texto completo da fonteKitagawa, Wataru, Keisuke Miyauchi, Eiji Masai e Masao Fukuda. "Cloning and Characterization of Benzoate Catabolic Genes in the Gram-Positive Polychlorinated Biphenyl DegraderRhodococcus sp. Strain RHA1". Journal of Bacteriology 183, n.º 22 (15 de novembro de 2001): 6598–606. http://dx.doi.org/10.1128/jb.183.22.6598-6606.2001.
Texto completo da fonteTomlinson, Patricia Tolson, e Carol J. Lovatt. "Nucleotide Metabolism in ‘Washington’ Navel Orange Fruit: I. Pathways of Synthesis and Catabolism". Journal of the American Society for Horticultural Science 112, n.º 3 (maio de 1987): 529–35. http://dx.doi.org/10.21273/jashs.112.3.529.
Texto completo da fonteGrantham, Barbara D., e J. Barrett. "Amino acid catabolism in the nematodes Heligmosomoides polygyrus and Panagrellus redivivus 2. Metabolism of the carbon skeleton". Parasitology 93, n.º 3 (dezembro de 1986): 495–504. http://dx.doi.org/10.1017/s0031182000081208.
Texto completo da fonteGunasekera, Angelo, Francisco J. Alvarez, Lois M. Douglas, Hong X. Wang, Adam P. Rosebrock e James B. Konopka. "Identification of GIG1, a GlcNAc-Induced Gene in Candida albicans Needed for Normal Sensitivity to the Chitin Synthase Inhibitor Nikkomycin Z". Eukaryotic Cell 9, n.º 10 (30 de julho de 2010): 1476–83. http://dx.doi.org/10.1128/ec.00178-10.
Texto completo da fonteEwart, H. S., M. Jois e J. T. Brosnan. "Rapid stimulation of the hepatic glycine-cleavage system in rats fed on a single high-protein meal". Biochemical Journal 283, n.º 2 (15 de abril de 1992): 441–47. http://dx.doi.org/10.1042/bj2830441.
Texto completo da fonteZhang, Meng, Yuting Fu, Yuhao Chen, Yuze Ma, Zhixin Guo, Yanfeng Wang, Huifang Hao, Quan Fu e Zhigang Wang. "Inhibition of the mTORC1/NF-κB Axis Alters Amino Acid Metabolism in Human Hepatocytes". BioMed Research International 2021 (18 de janeiro de 2021): 1–15. http://dx.doi.org/10.1155/2021/8621464.
Texto completo da fonteKramer, Boris W., Machiko Ikegami e Alan H. Jobe. "Surfactant phospholipid catabolic rate is pool size dependent in mice". American Journal of Physiology-Lung Cellular and Molecular Physiology 279, n.º 5 (1 de novembro de 2000): L842—L848. http://dx.doi.org/10.1152/ajplung.2000.279.5.l842.
Texto completo da fonte