Artigos de revistas sobre o tema "Catalytic pyrolysis"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Catalytic pyrolysis".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Wu, Zhi, Pengcheng Jiang, Hongxing Pang, et al. "Improving the Oxidation Resistance of Phenolic Resin Pyrolytic Carbons by In Situ Catalytic Formation of Carbon Nanofibers via Copper Nitrate." Materials 17, no. 15 (2024): 3770. http://dx.doi.org/10.3390/ma17153770.
Texto completo da fonteLee, Nahyeon, Junghee Joo, Kun-Yi Andrew Lin, and Jechan Lee. "Waste-to-Fuels: Pyrolysis of Low-Density Polyethylene Waste in the Presence of H-ZSM-11." Polymers 13, no. 8 (2021): 1198. http://dx.doi.org/10.3390/polym13081198.
Texto completo da fonteAlagu, R. M., and E. Ganapathy Sundaram. "Experimental Studies on Thermal and Catalytic Slow Pyrolysis of Groundnut Shell to Pyrolytic Oil." Applied Mechanics and Materials 787 (August 2015): 67–71. http://dx.doi.org/10.4028/www.scientific.net/amm.787.67.
Texto completo da fonteAlMohamadi, Hamad, Abdulrahman Aljabri, Essam R. I. Mahmoud, Sohaib Z. Khan, Meshal S. Aljohani, and Rashid Shamsuddin. "Catalytic Pyrolysis of Municipal Solid Waste: Effects of Pyrolysis Parameters." Bulletin of Chemical Reaction Engineering & Catalysis 16, no. 2 (2021): 342–52. http://dx.doi.org/10.9767/bcrec.16.2.10499.342-352.
Texto completo da fonteWang, Wenli, Yaxin Gu, Chengfen Zhou, and Changwei Hu. "Current Challenges and Perspectives for the Catalytic Pyrolysis of Lignocellulosic Biomass to High-Value Products." Catalysts 12, no. 12 (2022): 1524. http://dx.doi.org/10.3390/catal12121524.
Texto completo da fonteLu, Qiang, Xu-Ming Zhang, Zhi-Bo Zhang, Ying Zhang, Xi-Feng Zhu, and Chang-Qing Dong. "Catalytic fast pyrolysis of cellulose mixed with sulfated titania to produce levoglucosenone: Analytical Py-GC/MS study." BioResources 7, no. 3 (2012): 2820–34. http://dx.doi.org/10.15376/biores.7.3.2820-2834.
Texto completo da fonteKordatos, K., A. Ntziouni, S. Trasobares, and V. Kasselouri-Rigopoulou. "Synthesis of Carbon Nanotubes on Zeolite Substrate of Type ZSM-5." Materials Science Forum 636-637 (January 2010): 722–28. http://dx.doi.org/10.4028/www.scientific.net/msf.636-637.722.
Texto completo da fonteZhang, Zhi Bo, Xiao Ning Ye, Qiang Lu, Chang Qing Dong, and Yong Qian Liu. "Production of Phenolic Compounds from Low Temperature Catalytic Fast Pyrolysis of Biomass with Activated Carbon." Applied Mechanics and Materials 541-542 (March 2014): 190–94. http://dx.doi.org/10.4028/www.scientific.net/amm.541-542.190.
Texto completo da fonteLiu, Zhongzhe, Simcha Singer, Daniel Zitomer, and Patrick McNamara. "Sub-Pilot-Scale Autocatalytic Pyrolysis of Wastewater Biosolids for Enhanced Energy Recovery." Catalysts 8, no. 11 (2018): 524. http://dx.doi.org/10.3390/catal8110524.
Texto completo da fonteLiu, Juan, Xia Li та Qing Jie Guo. "Study of Catalytic Pyrolysis of Chlorella with γ-Al2O3 Catalyst". Advanced Materials Research 873 (грудень 2013): 562–66. http://dx.doi.org/10.4028/www.scientific.net/amr.873.562.
Texto completo da fonteGhimiș, Simona-Bianca, Florin Oancea, Monica-Florentina Raduly, et al. "Direct Hydrothermal Synthesis and Characterization of Zr–Ce-Incorporated SBA-15 Catalysts for the Pyrolysis Reaction of Algal Biomass." Energies 17, no. 15 (2024): 3765. http://dx.doi.org/10.3390/en17153765.
Texto completo da fonteKaliappan, S., M. Karthick, Pravin P. Patil, et al. "Utilization of Eco-Friendly Waste Eggshell Catalysts for Enhancing Liquid Product Yields through Pyrolysis of Forestry Residues." Journal of Nanomaterials 2022 (June 7, 2022): 1–10. http://dx.doi.org/10.1155/2022/3445485.
Texto completo da fonteMarlina, Ena, Akhmad Faruq Alhikami, Siti Asmaniyah Mardani, Trismawati Trismawati, and Cepi Yazirin. "Catalytic Pyrolysis of Plastic Waste using Red Mud and Limestone: Pyrolytic Oil Production and Ignition characteristics." Automotive Experiences 7, no. 3 (2024): 579–91. https://doi.org/10.31603/ae.12830.
Texto completo da fonteSulistyo, Joko, Toshimitsu Hata, Ganis Lukmandaru, Yunida Syafriani, and Sensho Honma. "Catalytic Process in Producing Green Aromatics through Fast Pyrolysis of Wood of Five Tropical Fast Growing Trees Species." Wood Research Journal 12, no. 1 (2021): 18–27. http://dx.doi.org/10.51850/wrj.2021.12.1.18-27.
Texto completo da fonteLiu, Junjian, Qidong Hou, Meiting Ju, Peng Ji, Qingmei Sun, and Weizun Li. "Biomass Pyrolysis Technology by Catalytic Fast Pyrolysis, Catalytic Co-Pyrolysis and Microwave-Assisted Pyrolysis: A Review." Catalysts 10, no. 7 (2020): 742. http://dx.doi.org/10.3390/catal10070742.
Texto completo da fonteFonseca, Noyala, Roger Fréty, and Emerson Andrade Sales. "Biogasoline Obtained Using Catalytic Pyrolysis of Desmodesmus sp. Microalgae: Comparison between Dry Biomass and n-Hexane Extract." Catalysts 12, no. 12 (2022): 1517. http://dx.doi.org/10.3390/catal12121517.
Texto completo da fonteHidayat, Arif, Muflih Arisa Adnan, and Heni Dewajani. "Production Biofuels from Palm Empty Fruit Bunch by Catalytic Pyrolysis Using Calcined Dolomite." Materials Science Forum 1029 (May 2021): 153–58. http://dx.doi.org/10.4028/www.scientific.net/msf.1029.153.
Texto completo da fonteYang, Yi, Zhongyang Luo, Simin Li, Kongyu Lu, and Wenbo Wang. "Catalytic pyrolysis of hemicellulose to produce aromatic hydrocarbons." BioResources 14, no. 3 (2019): 5816–31. http://dx.doi.org/10.15376/biores.14.3.5816-5831.
Texto completo da fonteBelbessai, Salma, El-Hadi Benyoussef, and Nicolas Abatzoglou. "Catalytic pyrolysis of high-density polyethylene for the production of carbon nanomaterials: effect of pyrolysis temperature." ENP Engineering Science Journal 3, no. 1 (2023): 54–58. http://dx.doi.org/10.53907/enpesj.v3i1.177.
Texto completo da fonteBalasundram, V., N. Ibrahim, and R. Isha. "The Effect of Temperature on Catalytic Pyrolysis of HDPE Over Ni/Ce/Al2O3." Journal of Advanced Research in Materials Science 77, no. 1 (2021): 26–35. http://dx.doi.org/10.37934/arms.77.1.2635.
Texto completo da fonteZhou, Quan, Quyet Van Le, Han Yang, et al. "Sustainable conversion of agricultural biomass into renewable energy products: A Discussion." BioResources 17, no. 2 (2022): 3489–508. http://dx.doi.org/10.15376/biores.17.2.zhou.
Texto completo da fonteKharitontsev, V. B., E. A. Tissen, E. S. Matveenko, et al. "Estimating the efficiency of catalysts for catalytic pyrolysis of polyethylene." Kataliz v promyshlennosti 23, no. 2 (2023): 58–65. http://dx.doi.org/10.18412/1816-0387-2023-2-58-65.
Texto completo da fonteReza, Md Sumon, Iskakova Zhanar Baktybaevna, Shammya Afroze, et al. "Influence of Catalyst on the Yield and Quality of Bio-Oil for the Catalytic Pyrolysis of Biomass: A Comprehensive Review." Energies 16, no. 14 (2023): 5547. http://dx.doi.org/10.3390/en16145547.
Texto completo da fonteSulistyo, Joko, Toshimitsu Hata, Sensho Honma, Ryohei Asakura, and Sri Nugroho Marsoem. "Green Aromatics from Catalytic Fast Pyrolysis of Fast Growing Meranti Biomass." Wood Research Journal 4, no. 1 (2017): 13–18. http://dx.doi.org/10.51850/wrj.2013.4.1.13-18.
Texto completo da fonteIisa, Kristiina, David J. Robichaud, Michael J. Watson, et al. "Improving biomass pyrolysis economics by integrating vapor and liquid phase upgrading." Green Chemistry 20, no. 3 (2018): 567–82. http://dx.doi.org/10.1039/c7gc02947k.
Texto completo da fonteYel, Esra, Merve Kalem, Gamze Göktepeli, Afra Özgan Kurt, Gülnare Ahmetli, and Vildan Önen. "Catalytic co-pyrolysis of PET/PP plastics and olive pomace biomass with marble sludge catalyst." Turkish Journal of Analytical Chemistry 7, no. 1 (2025): 33–45. https://doi.org/10.51435/turkjac.1609960.
Texto completo da fonteAdetunji, Adewale S., and Pious O. Okekunle. "Characterization of bio-oil yield from catalytic pyrolysis of Zea mays indentata corncob." LAUTECH Journal of Engineering and Technology 18, no. 4 (2024): 86–105. https://doi.org/10.36108/laujet/4202.81.040.
Texto completo da fonteKhalafova, Irada A., Natalya K. Andryushchenko, and Kanan N. Mammadli. "CATALYTIC PYROLYSIS SYSTEMS OF LIGHT HYDROCARBONS." Deutsche internationale Zeitschrift für zeitgenössische Wissenschaft 77 (April 4, 2024): 37–41. https://doi.org/10.5281/zenodo.10928992.
Texto completo da fontePoddar, Sourav, Rima Biswas, Sudipto De, and Ranjana Chowdhary. "Analysis of Tar by Catalytic Pyrolysis of Waste Jute." Journal of Advances in Mechanical Engineering and Science 1, no. 1 (2015): 12–19. http://dx.doi.org/10.18831/james.in/2015011002.
Texto completo da fonteAli, Ghulam, Marrij Afraz, Faisal Muhammad, et al. "Production of Fuel Range Hydrocarbons from Pyrolysis of Lignin over Zeolite Y, Hydrogen." Energies 16, no. 1 (2022): 215. http://dx.doi.org/10.3390/en16010215.
Texto completo da fonteZhong, Ming, Haiping Huang, Pengcheng Xu, and Jie Hu. "Catalysis of Minerals in Pyrolysis Experiments." Minerals 13, no. 4 (2023): 515. http://dx.doi.org/10.3390/min13040515.
Texto completo da fonteAmanat, A., Z. Hussain, M. Imran Din, et al. "Catalytic pyrolysis of Sweet Sorghum plant by using fixed-bed reactor; Effect of different temperatures on the pyrolytic bio-oil yield and FT-IR characterization." Journal of Optoelectronic and Biomedical Materials 13, no. 4 (2021): 137–44. http://dx.doi.org/10.15251/jobm.2021.134.137.
Texto completo da fonteLee, Younghyun, Soosan Kim, Jisu Kim, et al. "Catalytic Pyrolysis as a Technology to Dispose of Herbal Medicine Waste." Catalysts 10, no. 8 (2020): 826. http://dx.doi.org/10.3390/catal10080826.
Texto completo da fonteBautista, Angelica S., Karl Nikolai O. Rivera, Trixie Anne Kimberly M. Suratos, and Maria Natalia R. Dimaano. "Conversion of polypropylene (PP) plastic waste to liquid oil through catalytic pyrolysis using Philippine natural zeolite." IOP Conference Series: Materials Science and Engineering 1318, no. 1 (2024): 012053. http://dx.doi.org/10.1088/1757-899x/1318/1/012053.
Texto completo da fonteAbdulkhani, Ali, Zahra Echresh Zadeh, Solomon Gajere Bawa, et al. "Comparative Production of Bio-Oil from In Situ Catalytic Upgrading of Fast Pyrolysis of Lignocellulosic Biomass." Energies 16, no. 6 (2023): 2715. http://dx.doi.org/10.3390/en16062715.
Texto completo da fonteAkhtar, Muhammad Naseem, Nabeel Ahmad, and Feras Alqudayri. "Catalytic Transformation of LDPE into Aromatic-Rich Fuel Oil." Catalysts 15, no. 6 (2025): 532. https://doi.org/10.3390/catal15060532.
Texto completo da fonteSong, Jinling, Chuyang Tang, Xinyuan An, Yi Wang, Shankun Zhou, and Chunhong Huang. "Catalytic Pyrolysis of Sawdust with Desulfurized Fly Ash for Pyrolysis Gas Upgrading." International Journal of Environmental Research and Public Health 19, no. 23 (2022): 15755. http://dx.doi.org/10.3390/ijerph192315755.
Texto completo da fontePapuga, Saša, Milica Djurdjevic, Andrea Ciccioli, and Stefano Vecchio Ciprioti. "Catalytic Pyrolysis of Plastic Waste and Molecular Symmetry Effects: A Review." Symmetry 15, no. 1 (2022): 38. http://dx.doi.org/10.3390/sym15010038.
Texto completo da fonteDhanalakshmi, C. Sowmya, N. Ahalya, P. Vidhyalakshmi, et al. "Individual and Catalytic Co-Pyrolysis of Agricultural Outcomes and Polymeric Materials over Nano-HZSM-5 Zeolite: Synergistic Effects and Yield Analysis for Heating Applications." Journal of Nanomaterials 2022 (May 12, 2022): 1–11. http://dx.doi.org/10.1155/2022/3743299.
Texto completo da fonteXu, Tao, Jue Xu, and Yongping Wu. "Hydrogen-Rich Gas Production from Two-Stage Catalytic Pyrolysis of Pine Sawdust with Calcined Dolomite." Catalysts 12, no. 2 (2022): 131. http://dx.doi.org/10.3390/catal12020131.
Texto completo da fonteLee, Heejin, Young-Min Kim, Sang-Chul Jung, and Young-Kwon Park. "Catalytic Pyrolysis of Polyethylene Terephthalate Over Desilicated Beta." Journal of Nanoscience and Nanotechnology 20, no. 9 (2020): 5594–98. http://dx.doi.org/10.1166/jnn.2020.17636.
Texto completo da fonteYou, Ranyilong, Xinyu Yang, Chuyang Tang, and Xinyang Zhou. "Investigating the influence of desulfurization fly ash on the upgrading of biomass-derived pyrolysis gas." BioResources 20, no. 2 (2025): 2544–55. https://doi.org/10.15376/biores.20.2.2544-2555.
Texto completo da fonteBasu, Biswadip, and Deepak Kunzru. "Catalytic pyrolysis of naphtha." Industrial & Engineering Chemistry Research 31, no. 1 (1992): 146–55. http://dx.doi.org/10.1021/ie00001a021.
Texto completo da fonteBagri, Ranbir, and Paul T. Williams. "Catalytic pyrolysis of polyethylene." Journal of Analytical and Applied Pyrolysis 63, no. 1 (2002): 29–41. http://dx.doi.org/10.1016/s0165-2370(01)00139-5.
Texto completo da fonteGupta, Mehul. "Catalytic Pyrolysis of Polythene." Journal of Chemistry and Chemical Sciences 8, no. 10 (2018): 1159–65. http://dx.doi.org/10.29055/jccs/686.
Texto completo da fontePerez, G., M. Raimondo, A. De Stefanis, and A. A. G. Tomlinson. "Catalytic pyrolysis—gas chromatography." Journal of Analytical and Applied Pyrolysis 35, no. 2 (1995): 157–66. http://dx.doi.org/10.1016/0165-2370(95)00906-5.
Texto completo da fonteBinnal, Prakash, Vinayak Suresh Mali, Shruthi Puttappa Karjekannavar, and Sumanth Raj Mogaveera. "Enhancing Gasoline Range Hydrocarbons by Catalytic Co-pyrolysis of Rice Husk with Low Density Polyethylene (LDPE) Using Zeolite Socony Mobil#5(ZSM-5)." Periodica Polytechnica Chemical Engineering 64, no. 2 (2019): 221–29. http://dx.doi.org/10.3311/ppch.13850.
Texto completo da fontePark, Young-Kwon, Se Jeong Lim, Muhammad Zain Siddiqui, Jong-Ki Jeon, Kyung-Seun Yoo, and Young-Min Kim. "The Use of Low Cost Nanoporous Catalysts on the Catalytic Pyrolysis of Polyethylene Terephthalate." Journal of Nanoscience and Nanotechnology 21, no. 7 (2021): 4121–24. http://dx.doi.org/10.1166/jnn.2021.19198.
Texto completo da fonteZhao, Hao, Zhaoping Zhong, Zhaoying Li, and Wei Wang. "Research on catalytic pyrolysis of algae based on Py-GC/MS." Royal Society Open Science 6, no. 11 (2019): 191307. http://dx.doi.org/10.1098/rsos.191307.
Texto completo da fonteJamilatun, Siti, and Nurmustaqimah. "Catalytic pyrolysis and non-catalytic pyrolysis of sugarcane bagasse: Product yield and bio-oil characterization." BIO Web of Conferences 148 (2024): 01001. https://doi.org/10.1051/bioconf/202414801001.
Texto completo da fonte