Artigos de revistas sobre o tema "CaVβ1"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "CaVβ1".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Cohen, Risa M., Jason D. Foell, Ravi C. Balijepalli, Vaibhavi Shah, Johannes W. Hell та Timothy J. Kamp. "Unique modulation of L-type Ca2+ channels by short auxiliary β1d subunit present in cardiac muscle". American Journal of Physiology-Heart and Circulatory Physiology 288, № 5 (2005): H2363—H2374. http://dx.doi.org/10.1152/ajpheart.00348.2004.
Texto completo da fonteFoell, Jason D., Ravi C. Balijepalli, Brian P. Delisle та ін. "Molecular heterogeneity of calcium channel β-subunits in canine and human heart: evidence for differential subcellular localization". Physiological Genomics 17, № 2 (2004): 183–200. http://dx.doi.org/10.1152/physiolgenomics.00207.2003.
Texto completo da fonteDespang, Patrick, Sarah Salamon, Alexandra Breitenkamp, Elza Kuzmenkina та Jan Matthes. "Inhibitory effects on L- and N-type calcium channels by a novel CaVβ1 variant identified in a patient with autism spectrum disorder". Naunyn-Schmiedeberg's Archives of Pharmacology 395, № 4 (2022): 459–70. http://dx.doi.org/10.1007/s00210-022-02213-7.
Texto completo da fonteTraoré, Massiré, Christel Gentil, Chiara Benedetto та ін. "An embryonic CaVβ1 isoform promotes muscle mass maintenance via GDF5 signaling in adult mouse". Science Translational Medicine 11, № 517 (2019): eaaw1131. http://dx.doi.org/10.1126/scitranslmed.aaw1131.
Texto completo da fonteBelkacemi, Anouar, Andreas Beck, Barbara Wardas, Petra Weissgerber та Veit Flockerzi. "IP3-dependent Ca2+ signals are tightly controlled by Cavβ3, but not by Cavβ1, 2 and 4". Cell Calcium 104 (червень 2022): 102573. http://dx.doi.org/10.1016/j.ceca.2022.102573.
Texto completo da fonteHeneghan, John F., Tora Mitra-Ganguli, Lee F. Stanish, Liwang Liu, Rubing Zhao та Ann R. Rittenhouse. "The Ca2+ channel β subunit determines whether stimulation of Gq-coupled receptors enhances or inhibits N current". Journal of General Physiology 134, № 5 (2009): 369–84. http://dx.doi.org/10.1085/jgp.200910203.
Texto completo da fonteBrown, Betty, M. Steven Oberste, Kaija Maher, and Mark A. Pallansch. "Complete Genomic Sequencing Shows that Polioviruses and Members of Human Enterovirus Species C Are Closely Related in the Noncapsid Coding Region." Journal of Virology 77, no. 16 (2003): 8973–84. http://dx.doi.org/10.1128/jvi.77.16.8973-8984.2003.
Texto completo da fonteTaylor, Jackson, Tan Zhang, Laura Messi та ін. "The Cavβ1 Subunit Regulates Gene Expression in Muscle Progenitor Cells". Biophysical Journal 102, № 3 (2012): 365a. http://dx.doi.org/10.1016/j.bpj.2011.11.1993.
Texto completo da fonteTraore, M., C. Gentil, C. Benedetto та ін. "P.133A novel CaVβ1 isoform connecting voltage sensing with muscle mass homeostasis". Neuromuscular Disorders 29 (жовтень 2019): S87. http://dx.doi.org/10.1016/j.nmd.2019.06.189.
Texto completo da fonteBuraei, Zafir, та Jian Yang. "The β Subunit of Voltage-Gated Ca2+ Channels". Physiological Reviews 90, № 4 (2010): 1461–506. http://dx.doi.org/10.1152/physrev.00057.2009.
Texto completo da fontePark, Won Sun, Soon Chul Heo, Eun Su Jeon та ін. "Functional expression of smooth muscle-specific ion channels in TGF-β1-treated human adipose-derived mesenchymal stem cells". American Journal of Physiology-Cell Physiology 305, № 4 (2013): C377—C391. http://dx.doi.org/10.1152/ajpcell.00404.2012.
Texto completo da fonteXie, Mian, Xiang Li, Jing Han та ін. "Facilitation versus depression in cultured hippocampal neurons determined by targeting of Ca2+ channel Cavβ4 versus Cavβ2 subunits to synaptic terminals". Journal of Cell Biology 178, № 3 (2007): 489–502. http://dx.doi.org/10.1083/jcb.200702072.
Texto completo da fonteBéguin, Pascal, Kazuaki Nagashima, Ramasubbu N. Mahalakshmi, et al. "BARP suppresses voltage-gated calcium channel activity and Ca2+-evoked exocytosis." Journal of Cell Biology 205, no. 2 (2014): 233–49. http://dx.doi.org/10.1083/jcb.201304101.
Texto completo da fonteFindeisen, Felix, and Daniel L. Minor. "Disruption of the IS6-AID Linker Affects Voltage-gated Calcium Channel Inactivation and Facilitation." Journal of General Physiology 133, no. 3 (2009): 327–43. http://dx.doi.org/10.1085/jgp.200810143.
Texto completo da fonteGonzalez-Gutierrez, Giovanni, Erick Miranda-Laferte, David Naranjo, Patricia Hidalgo та Alan Neely. "Mutations of Nonconserved Residues within the Calcium Channel α1-interaction Domain Inhibit β-Subunit Potentiation". Journal of General Physiology 132, № 3 (2008): 383–95. http://dx.doi.org/10.1085/jgp.200709901.
Texto completo da fonteRomano, Antonella, Antonia Feola, Antonio Porcellini, et al. "Estrogen Induces Selective Transcription of Caveolin1 Variants in Human Breast Cancer through Estrogen Responsive Element-Dependent Mechanisms." International Journal of Molecular Sciences 21, no. 17 (2020): 5989. http://dx.doi.org/10.3390/ijms21175989.
Texto completo da fonteJha, Mithilesh, Archana Jha, Ashish Singh та ін. "Essential role of Cavβ2 in T Cell development and homeostasis. (LYM7P.715)". Journal of Immunology 192, № 1_Supplement (2014): 193.3. http://dx.doi.org/10.4049/jimmunol.192.supp.193.3.
Texto completo da fonteTaylor, Jackson, Andrea Pereyra, Tan Zhang та ін. "The Cavβ1a subunit regulates gene expression and suppresses myogenin in muscle progenitor cells". Journal of Cell Biology 205, № 6 (2014): 829–46. http://dx.doi.org/10.1083/jcb.201403021.
Texto completo da fonteAn, Mingwei, Xueling Chen, Zhuhong Yang, Jianyu Zhou, Shan Ye та Zhong Ding. "Co-Silencing of the Voltage-Gated Calcium Channel β Subunit and High-Voltage Activated α1 Subunit by dsRNA Soaking Resulted in Enhanced Defects in Locomotion, Stylet Thrusting, Chemotaxis, Protein Secretion, and Reproduction in Ditylenchus destructor". International Journal of Molecular Sciences 23, № 2 (2022): 784. http://dx.doi.org/10.3390/ijms23020784.
Texto completo da fonteCatalucci, Daniele, Deng-Hong Zhang, Jaime DeSantiago та ін. "Akt regulates L-type Ca2+ channel activity by modulating Cavα1 protein stability". Journal of Cell Biology 184, № 6 (2009): 923–33. http://dx.doi.org/10.1083/jcb.200805063.
Texto completo da fontePuckerin, Akil A., Donald D. Chang, Zunaira Shuja, Papiya Choudhury, Joachim Scholz, and Henry M. Colecraft. "Engineering selectivity into RGK GTPase inhibition of voltage-dependent calcium channels." Proceedings of the National Academy of Sciences 115, no. 47 (2018): 12051–56. http://dx.doi.org/10.1073/pnas.1811024115.
Texto completo da fonteMitra-Ganguli, Tora, Iuliia Vitko, Edward Perez-Reyes та Ann R. Rittenhouse. "Orientation of palmitoylated CaVβ2a relative to CaV2.2 is critical for slow pathway modulation of N-type Ca2+ current by tachykinin receptor activation". Journal of General Physiology 134, № 5 (2009): 385–96. http://dx.doi.org/10.1085/jgp.200910204.
Texto completo da fonteMeissner, Marcel, Petra Weissgerber, Juan E. Camacho Londoño, et al. "Moderate Calcium Channel Dysfunction in Adult Mice with Inducible Cardiomyocyte-specific Excision of the cacnb2 Gene." Journal of Biological Chemistry 286, no. 18 (2011): 15875–82. http://dx.doi.org/10.1074/jbc.m111.227819.
Texto completo da fonteChen, Xingjuan, Degang Liu, Donghui Zhou та ін. "Small-molecule CaVα1⋅CaVβ antagonist suppresses neuronal voltage-gated calcium-channel trafficking". Proceedings of the National Academy of Sciences 115, № 45 (2018): E10566—E10575. http://dx.doi.org/10.1073/pnas.1813157115.
Texto completo da fonteAl Katat, Aya, Juan Zhao, Angelino Calderone та Lucie Parent. "Sympathetic Stimulation Upregulates the Ca2+ Channel Subunit, CaVα2δ1, via the β1 and ERK 1/2 Pathway in Neonatal Ventricular Cardiomyocytes". Cells 11, № 2 (2022): 188. http://dx.doi.org/10.3390/cells11020188.
Texto completo da fonteJangsangthong, Wanchana, Elza Kuzmenkina, Ann Kristin Böhnke та Stefan Herzig. "Single-Channel Monitoring of Reversible L-Type Ca2+ Channel CaVα1-CaVβ Subunit Interaction". Biophysical Journal 101, № 11 (2011): 2661–70. http://dx.doi.org/10.1016/j.bpj.2011.09.063.
Texto completo da fonteJha, Archana, Ashish K. Singh, Petra Weissgerber та ін. "Essential roles for Cavβ2 and Cav1 channels in thymocyte development and T cell homeostasis". Science Signaling 8, № 399 (2015): ra103. http://dx.doi.org/10.1126/scisignal.aac7538.
Texto completo da fonteRoberts-Crowley, Mandy L., та Ann R. Rittenhouse. "Arachidonic acid inhibition of L-type calcium (CaV1.3b) channels varies with accessory CaVβ subunits". Journal of General Physiology 133, № 4 (2009): 387–403. http://dx.doi.org/10.1085/jgp.200810047.
Texto completo da fonteBennett, Robert. "Reflecting on Editorial and Publishing Challenges: Government and Policy; The First 25 Years." Environment and Planning C: Government and Policy 26, no. 1 (2008): 1–16. http://dx.doi.org/10.1068/cav1.
Texto completo da fontePark, Heonyong, Young-Mi Go, Ritesh Darji, et al. "Caveolin-1 regulates shear stress-dependent activation of extracellular signal-regulated kinase." American Journal of Physiology-Heart and Circulatory Physiology 278, no. 4 (2000): H1285—H1293. http://dx.doi.org/10.1152/ajpheart.2000.278.4.h1285.
Texto completo da fonteVan Petegem, Filip, Karl E. Duderstadt, Kimberly A. Clark, Michelle Wang та Daniel L. Minor. "Alanine-Scanning Mutagenesis Defines a Conserved Energetic Hotspot in the CaVα1 AID-CaVβ Interaction Site that Is Critical for Channel Modulation". Structure 16, № 2 (2008): 280–94. http://dx.doi.org/10.1016/j.str.2007.11.010.
Texto completo da fonteColvin, Robert B. "CADI, Canti, Cavi1." Transplantation 83, no. 6 (2007): 677–78. http://dx.doi.org/10.1097/01.tp.0000262011.05196.a1.
Texto completo da fonteCroager, Emma. "CAV1 connection." Nature Reviews Cancer 4, no. 2 (2004): 90–91. http://dx.doi.org/10.1038/nrc1283.
Texto completo da fonteBernardo, José F., Clara E. Magyar, W. Bruce Sneddon та Peter A. Friedman. "Impaired renal calcium absorption in mice lacking calcium channel β3 subunits". Canadian Journal of Physiology and Pharmacology 87, № 7 (2009): 522–30. http://dx.doi.org/10.1139/y09-035.
Texto completo da fonteCopeland, Courtney A., Bing Han, Ajit Tiwari, et al. "A disease-associated frameshift mutation in caveolin-1 disrupts caveolae formation and function through introduction of a de novo ER retention signal." Molecular Biology of the Cell 28, no. 22 (2017): 3095–111. http://dx.doi.org/10.1091/mbc.e17-06-0421.
Texto completo da fonteEl-Yazbi, Ahmed F., Woo Jung Cho, Richard Schulz та Edwin E. Daniel. "Caveolin-1 knockout alters β-adrenoceptors function in mouse small intestine". American Journal of Physiology-Gastrointestinal and Liver Physiology 291, № 6 (2006): G1020—G1030. http://dx.doi.org/10.1152/ajpgi.00159.2006.
Texto completo da fonteRathor, Navneeta, Ran Zhuang, Jian-Ying Wang, James M. Donahue, Douglas J. Turner, and Jaladanki N. Rao. "Src-mediated caveolin-1 phosphorylation regulates intestinal epithelial restitution by altering Ca2+ influx after wounding." American Journal of Physiology-Gastrointestinal and Liver Physiology 306, no. 8 (2014): G650—G658. http://dx.doi.org/10.1152/ajpgi.00003.2014.
Texto completo da fonteGeletu, Mulu, Zaid Taha, Rozanne Arulanandam, et al. "Effect of caveolin-1 on Stat3-ptyr705 levels in breast and lung carcinoma cells." Biochemistry and Cell Biology 97, no. 5 (2019): 638–46. http://dx.doi.org/10.1139/bcb-2018-0367.
Texto completo da fonteGodina, Christopher, Somayeh Khazaei, Mattias Belting, et al. "Abstract A006: Spatial localization of Caveolin-1 protein in triple negative breast cancer is related to different molecular features." Cancer Research 84, no. 3_Supplement_1 (2024): A006. http://dx.doi.org/10.1158/1538-7445.advbc23-a006.
Texto completo da fonteJoshi, Bharat, Michele Bastiani, Scott S. Strugnell, Cecile Boscher, Robert G. Parton, and Ivan R. Nabi. "Phosphocaveolin-1 is a mechanotransducer that induces caveola biogenesis via Egr1 transcriptional regulation." Journal of Cell Biology 199, no. 3 (2012): 425–35. http://dx.doi.org/10.1083/jcb.201207089.
Texto completo da fonteTang, Wenqing, Xuemei Feng, Si Zhang, et al. "Caveolin-1 Confers Resistance of Hepatoma Cells to Anoikis by Activating IGF-1 Pathway." Cellular Physiology and Biochemistry 36, no. 3 (2015): 1223–36. http://dx.doi.org/10.1159/000430292.
Texto completo da fonteFeldman, Rebecca, Zoran Gatalica, Sandeep K. Reddy, Michael Castro, and Jasgit C. Sachdev. "Caveolin-1: Oncogenic role in breast cancer? Clues from molecular profiling." Journal of Clinical Oncology 33, no. 28_suppl (2015): 134. http://dx.doi.org/10.1200/jco.2015.33.28_suppl.134.
Texto completo da fonteCai, Ting, Haojie Wang, Yiliang Chen, et al. "Regulation of caveolin-1 membrane trafficking by the Na/K-ATPase." Journal of Cell Biology 182, no. 6 (2008): 1153–69. http://dx.doi.org/10.1083/jcb.200712022.
Texto completo da fonteAvchalumov, Yosef, Alison D. Kreisler, Wulfran Trenet, et al. "Caveolin-1 Expression in the Dorsal Striatum Drives Methamphetamine Addiction-Like Behavior." International Journal of Molecular Sciences 22, no. 15 (2021): 8219. http://dx.doi.org/10.3390/ijms22158219.
Texto completo da fonteGodina, Christopher, Somayeh Khazaei, Mattias Belting, et al. "High Caveolin-1 mRNA expression in triple-negative breast cancer is associated with an aggressive tumor microenvironment, chemoresistance, and poor clinical outcome." PLOS ONE 19, no. 7 (2024): e0305222. http://dx.doi.org/10.1371/journal.pone.0305222.
Texto completo da fonteZimnicka, Adriana M., Yawer S. Husain, Ayesha N. Shajahan, et al. "Src-dependent phosphorylation of caveolin-1 Tyr-14 promotes swelling and release of caveolae." Molecular Biology of the Cell 27, no. 13 (2016): 2090–106. http://dx.doi.org/10.1091/mbc.e15-11-0756.
Texto completo da fonteAl Madhoun, Ashraf, Shihab Kochumon, Dania Haddad та ін. "Adipose Tissue Caveolin-1 Upregulation in Obesity Involves TNF-α/NF-κB Mediated Signaling". Cells 12, № 7 (2023): 1019. http://dx.doi.org/10.3390/cells12071019.
Texto completo da fonteLobos-González, Lorena, Lorena Oróstica, Natalia Díaz-Valdivia, et al. "Prostaglandin E2 Exposure Disrupts E-Cadherin/Caveolin-1-Mediated Tumor Suppression to Favor Caveolin-1-Enhanced Migration, Invasion, and Metastasis in Melanoma Models." International Journal of Molecular Sciences 24, no. 23 (2023): 16947. http://dx.doi.org/10.3390/ijms242316947.
Texto completo da fonteGairhe, Salina, Keytam S. Awad, Edward J. Dougherty, et al. "Type I interferon activation and endothelial dysfunction in caveolin-1 insufficiency-associated pulmonary arterial hypertension." Proceedings of the National Academy of Sciences 118, no. 11 (2021): e2010206118. http://dx.doi.org/10.1073/pnas.2010206118.
Texto completo da fonteZhang, Chengbiao, Xiaotong Su, Lars Bellner, and Dao-Hong Lin. "Caveolin-1 regulates corneal wound healing by modulating Kir4.1 activity." American Journal of Physiology-Cell Physiology 310, no. 11 (2016): C993—C1000. http://dx.doi.org/10.1152/ajpcell.00023.2016.
Texto completo da fonte