Artigos de revistas sobre o tema "CCNE2"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "CCNE2".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Kondo, Yukio, Eric Wieder, Sijie Lu e Jeffrey Molldrem. "High Avidity Cyclin E1-Derived Peptide-Specific CTL Kill Lymphoid Leukemia Cells and Cross-Recognize a Homologous Cyclin E2-Derived Peptide." Blood 104, n.º 11 (16 de novembro de 2004): 4498. http://dx.doi.org/10.1182/blood.v104.11.4498.4498.
Texto completo da fonteSonntag, Roland, Nives Giebeler, Yulia A. Nevzorova, Jörg-Martin Bangen, Dirk Fahrenkamp, Daniela Lambertz, Ute Haas et al. "Cyclin E1 and cyclin-dependent kinase 2 are critical for initiation, but not for progression of hepatocellular carcinoma". Proceedings of the National Academy of Sciences 115, n.º 37 (27 de agosto de 2018): 9282–87. http://dx.doi.org/10.1073/pnas.1807155115.
Texto completo da fonteIshiyama, Ken, Yukio Kondo, Eric Wieder, Sijie Lu e Jeffrey Molldrem. "High Avidity Cyclin E-Derived Peptide-Specific CTL Contribute to Induction of Remission after Stem Cell Transplantation without Associated Graft-Versus-Host Disease." Blood 106, n.º 11 (16 de novembro de 2005): 1424. http://dx.doi.org/10.1182/blood.v106.11.1424.1424.
Texto completo da fonteHe, Hong, Ken Ishiyama, Gheath Alatrash, Yukio Kondo, Sijie Lu e Jeffrey J. Molldrem. "T-Cell Immunity to Two HLA-A2-Restricted Self-Determinants of Cyclin E May Contribute to Remission After Stem Cell Transplantation." Blood 114, n.º 22 (20 de novembro de 2009): 686. http://dx.doi.org/10.1182/blood.v114.22.686.686.
Texto completo da fonteMartín-Garcia, David, Alba Navarro, Rafael Valdés-Mas, Guillem Clot, Jesús Gutiérrez-Abril, Miriam Prieto, Inmaculada Ribera-Cortada et al. "CCND2 and CCND3 hijack immunoglobulin light-chain enhancers in cyclin D1− mantle cell lymphoma". Blood 133, n.º 9 (28 de fevereiro de 2019): 940–51. http://dx.doi.org/10.1182/blood-2018-07-862151.
Texto completo da fonteWu, Lizheng, Kuan Yang, Yajie Gui e Xiaojing Wang. "Nicotine-upregulated miR-30a arrests cell cycle in G1 phase by directly targeting CCNE2 in human periodontal ligament cells". Biochemistry and Cell Biology 98, n.º 3 (junho de 2020): 354–61. http://dx.doi.org/10.1139/bcb-2019-0156.
Texto completo da fonteTao, Kaiyi, JinShi Liu, JinXiao Liang, XiaoFang Xu, LiWei Xu e WeiMin Mao. "Vascular endothelial cell-derived exosomal miR-30a-5p inhibits lung adenocarcinoma malignant progression by targeting CCNE2". Carcinogenesis 42, n.º 8 (15 de junho de 2021): 1056–67. http://dx.doi.org/10.1093/carcin/bgab051.
Texto completo da fonteDiab, Sami, Matei P. Socoteanu, Carlos A. Encarnacion, Cynthia R. C. Osborne, Carolyn B. Hendricks, Kristi McIntyre, Vibha Taneja Thomas et al. "High-risk breast cancer genes at 8q22-24 and their role in over 5,000 patients evaluated with the 70-gene risk of recurrence assay." Journal of Clinical Oncology 38, n.º 15_suppl (20 de maio de 2020): 3569. http://dx.doi.org/10.1200/jco.2020.38.15_suppl.3569.
Texto completo da fonteLee, Christine, Kristine J. Fernandez, Sarah Alexandrou, C. Marcelo Sergio, Niantao Deng, Samuel Rogers, Andrew Burgess e C. Elizabeth Caldon. "Cyclin E2 Promotes Whole Genome Doubling in Breast Cancer". Cancers 12, n.º 8 (13 de agosto de 2020): 2268. http://dx.doi.org/10.3390/cancers12082268.
Texto completo da fonteKikuchi, Kei, e Daisuke Kaida. "CCNE1 and E2F1 Partially Suppress G1 Phase Arrest Caused by Spliceostatin A Treatment". International Journal of Molecular Sciences 22, n.º 21 (27 de outubro de 2021): 11623. http://dx.doi.org/10.3390/ijms222111623.
Texto completo da fonteIrving-Rodgers, H. F., S. T. Lee, N. Hatzirodos, K. Hummitzsch, T. R. Sullivan e R. J. Rodgers. "143. DIFFERENCES IN GENE EXPRESSION BETWEEN APICAL AND BASAL CELLS OF THE MEMBRANA GRANULOSA". Reproduction, Fertility and Development 22, n.º 9 (2010): 61. http://dx.doi.org/10.1071/srb10abs143.
Texto completo da fonteDeng, Yu, He Huang, Jiangcheng Shi e Hongyan Jin. "Identification of Candidate Genes in Breast Cancer Induced by Estrogen Plus Progestogens Using Bioinformatic Analysis". International Journal of Molecular Sciences 23, n.º 19 (6 de outubro de 2022): 11892. http://dx.doi.org/10.3390/ijms231911892.
Texto completo da fonteXu, Xuting, Limin Xu, Huilian Huang, Jing Li, Shunli Dong, Lili Jin, Zhihong Ma e Liqin Li. "Identification of Hub Genes as Biomarkers Correlated with the Proliferation and Prognosis in Lung Cancer: A Weighted Gene Co-Expression Network Analysis". BioMed Research International 2020 (11 de junho de 2020): 1–11. http://dx.doi.org/10.1155/2020/3416807.
Texto completo da fonteFeng, Weiliang, Chen Wang, Chenlu Liang, Hongjian Yang, Daobao Chen, Xingfei Yu, Wenyan Zhao et al. "The Dysregulated Expression of KCNQ1OT1 and Its Interaction with Downstream Factors miR-145/CCNE2 in Breast Cancer Cells". Cellular Physiology and Biochemistry 49, n.º 2 (2018): 432–46. http://dx.doi.org/10.1159/000492978.
Texto completo da fonteZhou, Jian, Wei-Qiang Ju, Xiao-Peng Yuan, Xiao-Feng Zhu, Dong-Ping Wang e Xiao-Shun He. "miR-26a regulates mouse hepatocyte proliferation via directly targeting the 3' untranslated region of CCND2 and CCNE2". Hepatobiliary & Pancreatic Diseases International 15, n.º 1 (fevereiro de 2016): 065–72. http://dx.doi.org/10.1016/s1499-3872(15)60383-6.
Texto completo da fonteWelsch, Eva, Eva Schuster, Michael Krainer, Maximilian Marhold, Rupert Bartsch, Michael B. Fischer, Michael Hermann et al. "Comparison of RNA Marker Panels for Circulating Tumor Cells and Evaluation of Their Prognostic Relevance in Breast Cancer". Cancers 15, n.º 4 (16 de fevereiro de 2023): 1271. http://dx.doi.org/10.3390/cancers15041271.
Texto completo da fonteSotiriou, C., M. Paesmans, A. Harris, M. A. Colozza, S. Fox, M. Taylor, A. Sorre, P. Martiat, F. Cardoso e M. Piccart. "Cyclin E1 (CCNE1) and E2 (CCNE2) as prognostic and predictive markers for endocrine therapy (ET) in early breast cancer". Journal of Clinical Oncology 22, n.º 14_suppl (15 de julho de 2004): 9504. http://dx.doi.org/10.1200/jco.2004.22.90140.9504.
Texto completo da fonteSotiriou, C., M. Paesmans, A. Harris, M. A. Colozza, S. Fox, M. Taylor, A. Sorre, P. Martiat, F. Cardoso e M. Piccart. "Cyclin E1 (CCNE1) and E2 (CCNE2) as prognostic and predictive markers for endocrine therapy (ET) in early breast cancer". Journal of Clinical Oncology 22, n.º 14_suppl (15 de julho de 2004): 9504. http://dx.doi.org/10.1200/jco.2004.22.14_suppl.9504.
Texto completo da fontePegoraro, Silvia, Gloria Ros, Yari Ciani, Riccardo Sgarra, Silvano Piazza e Guidalberto Manfioletti. "A novel HMGA1-CCNE2-YAP axis regulates breast cancer aggressiveness". Oncotarget 6, n.º 22 (22 de maio de 2015): 19087–101. http://dx.doi.org/10.18632/oncotarget.4236.
Texto completo da fonteGao, Li, Rong-quan He, Hua-yu Wu, Tong-tong Zhang, Hai-wei Liang, Zhi-hua Ye, Zu-yun Li et al. "Expression Signature and Role of miR-30d-5p in Non-Small Cell Lung Cancer: a Comprehensive Study Based on in Silico Analysis of Public Databases and in Vitro Experiments". Cellular Physiology and Biochemistry 50, n.º 5 (2018): 1964–87. http://dx.doi.org/10.1159/000494875.
Texto completo da fonteZeillinger, R., E. Obermayr, A. Fink-Retter, G. Heinze, A. Reinthaller, R. Horvat e D. C. Castillo-Tong. "Molecular markers for circulating tumor cells in breast cancer." Journal of Clinical Oncology 29, n.º 27_suppl (20 de setembro de 2011): 223. http://dx.doi.org/10.1200/jco.2011.29.27_suppl.223.
Texto completo da fonteShao, Li, Ri-Cheng Chian, Yixin Xu, Zhengjie Yan, Yihui Zhang, Chao Gao, Li Gao, Jiayin Liu e Yugui Cui. "Genomic expression profiles in cumulus cells derived from germinal vesicle and MII mouse oocytes". Reproduction, Fertility and Development 28, n.º 11 (2016): 1798. http://dx.doi.org/10.1071/rd15077.
Texto completo da fonteMizuno, Keiko, Kengo Tanigawa, Shunsuke Misono, Takayuki Suetsugu, Hiroki Sanada, Akifumi Uchida, Minami Kawano et al. "Regulation of Oncogenic Targets by Tumor-Suppressive miR-150-3p in Lung Squamous Cell Carcinoma". Biomedicines 9, n.º 12 (11 de dezembro de 2021): 1883. http://dx.doi.org/10.3390/biomedicines9121883.
Texto completo da fonteLiu, Cui-Zhen, Wan-Ping Guo, Jin-Bo Peng, Gang Chen, Peng Lin, Xiao-Li Huang, Xiao-Fan Liu et al. "Clinical significance of CCNE2 protein and mRNA expression in thyroid cancer tissues". Advances in Medical Sciences 65, n.º 2 (setembro de 2020): 442–56. http://dx.doi.org/10.1016/j.advms.2020.09.001.
Texto completo da fonteWu, Deqin, Jing He, Wei Zhang, Kai Wang, Shidai Jin, Jun Li e Wen Gao. "CARM1 promotes non-small cell lung cancer progression through upregulating CCNE2 expression". Aging 12, n.º 11 (2 de junho de 2020): 10578–93. http://dx.doi.org/10.18632/aging.103280.
Texto completo da fonteKabir, Mohammad Faujul, Johari Mohd Ali e Onn Haji Hashim. "Microarray gene expression profiling in colorectal (HCT116) and hepatocellular (HepG2) carcinoma cell lines treated withMelicope ptelefolialeaf extract reveals transcriptome profiles exhibiting anticancer activity". PeerJ 6 (18 de julho de 2018): e5203. http://dx.doi.org/10.7717/peerj.5203.
Texto completo da fonteYu, Ai Qing, Zhi Xiao Wang, Wu Wu, Ke Yu Chen, Shi Rong Yan e Ze Bin Mao. "Circular RNA CircCCNB1 sponges micro RNA-449a to inhibit cellular senescence by targeting CCNE2". Aging 11, n.º 22 (25 de novembro de 2019): 10220–41. http://dx.doi.org/10.18632/aging.102449.
Texto completo da fonteMinegishi, Naoko, Hideo Harigae e Masayuki Yamamoto. "Bidirectional Control of Transcription Factor GATA2 and Cyclin/Cdks in Hematopoietic Cells." Blood 112, n.º 11 (16 de novembro de 2008): 1382. http://dx.doi.org/10.1182/blood.v112.11.1382.1382.
Texto completo da fonteBüchel, Janine, Maria Bartosova, Gwendolyn Eich, Timo Wittenberger, Ludger Klein-Hitpass, Sonja Steppan, Thilo Hackert, Franz Schaefer, Jutta Passlick-Deetjen e Claus P. Schmitt. "Interference of Peritoneal Dialysis Fluids with Cell Cycle Mechanisms". Peritoneal Dialysis International: Journal of the International Society for Peritoneal Dialysis 35, n.º 3 (maio de 2015): 259–74. http://dx.doi.org/10.3747/pdi.2013.00010.
Texto completo da fonteGorjala, P., J. G. Cairncross e R. K. Gary. "p53-dependent up-regulation of CDKN1A and down-regulation of CCNE2 in response to beryllium". Cell Proliferation 49, n.º 6 (9 de setembro de 2016): 698–709. http://dx.doi.org/10.1111/cpr.12291.
Texto completo da fonteGao, Peng, Huan Wang, Jiarui Yu, Jie Zhang, Zhao Yang, Meiyue Liu, Yi Niu et al. "miR-3607-3p suppresses non-small cell lung cancer (NSCLC) by targeting TGFBR1 and CCNE2". PLOS Genetics 14, n.º 12 (17 de dezembro de 2018): e1007790. http://dx.doi.org/10.1371/journal.pgen.1007790.
Texto completo da fonteLi, Chuan, Zhi Peng, You Zhou, Yongyue Su, Pengfei Bu, Xuhan Meng, Bo Li e Yongqing Xu. "Comprehensive analysis of pathological changes in hip joint capsule of patients with developmental dysplasia of the hip". Bone & Joint Research 10, n.º 9 (1 de setembro de 2021): 558–70. http://dx.doi.org/10.1302/2046-3758.109.bjr-2020-0421.r2.
Texto completo da fonteZhuang, Liping, Zongguo Yang e Zhiqiang Meng. "Upregulation of BUB1B, CCNB1, CDC7, CDC20, and MCM3 in Tumor Tissues Predicted Worse Overall Survival and Disease-Free Survival in Hepatocellular Carcinoma Patients". BioMed Research International 2018 (30 de setembro de 2018): 1–8. http://dx.doi.org/10.1155/2018/7897346.
Texto completo da fonteLei, Brian, e Anjana Saxena. "Abstract C049: Investigating cancer racial disparities through TCGA transcriptomic and proteomic database". Cancer Epidemiology, Biomarkers & Prevention 32, n.º 1_Supplement (1 de janeiro de 2023): C049. http://dx.doi.org/10.1158/1538-7755.disp22-c049.
Texto completo da fonteEntin, Igor, Shmuel Yaccoby, Wen Zhining, John Shaughnessy, Bart Barlogie e Joshua Epstein. "Myeloma Cell Interaction with Osteoclasts and Mesenchymal Stem Cells Reveals Genes Associated with Post Relapse Survival". Blood 116, n.º 21 (19 de novembro de 2010): 2957. http://dx.doi.org/10.1182/blood.v116.21.2957.2957.
Texto completo da fonteYang, Jie, Zhen Dong, Aishu Ren, Gang Fu, Kui Zhang, Changhong Li, Xiangwei Wang e Hongjuan Cui. "Antibiotic tigecycline inhibits cell proliferation, migration and invasion via down‐regulating CCNE2 in pancreatic ductal adenocarcinoma". Journal of Cellular and Molecular Medicine 24, n.º 7 (6 de março de 2020): 4245–60. http://dx.doi.org/10.1111/jcmm.15086.
Texto completo da fonteGong, Ke, Huiling Zhou, Haidan Liu, Ting Xie, Yong Luo, Hui Guo, Jinlan Chen, Zhiping Tan, Yifeng Yang e Li Xie. "Identification and Integrate Analysis of Key Biomarkers for Diagnosis and Prognosis of Non-Small Cell Lung Cancer Based on Bioinformatics Analysis". Technology in Cancer Research & Treatment 20 (janeiro de 2021): 153303382110602. http://dx.doi.org/10.1177/15330338211060202.
Texto completo da fonteLi, Dongfeng, Zaixu Pan, Kun Zhang, Minli Yu, Debing Yu, Yinglin Lu, Jiantao Wang, Jin Zhang, Kangning Zhang e Wenxing Du. "Identification of the Differentially Expressed Genes of Muscle Growth and Intramuscular Fat Metabolism in the Development Stage of Yellow Broilers". Genes 11, n.º 3 (26 de fevereiro de 2020): 244. http://dx.doi.org/10.3390/genes11030244.
Texto completo da fonteKe, Shandong, e Xiaofen Zhou. "LncRNA MVIH knockdown inhibits the malignancy progression through downregulating miR-505 mediated HMGB1 and CCNE2 in acute myeloid leukemia". Translational Cancer Research 8, n.º 7 (novembro de 2019): 2526–34. http://dx.doi.org/10.21037/tcr.2019.10.12.
Texto completo da fonteChen, Di, Weijie Guo, Zhaoping Qiu, Qifeng Wang, Yan Li, Linhui Liang, Li Liu, Shenglin Huang, Yingjun Zhao e Xianghuo He. "MicroRNA-30d-5p inhibits tumour cell proliferation and motility by directly targeting CCNE2 in non-small cell lung cancer". Cancer Letters 362, n.º 2 (julho de 2015): 208–17. http://dx.doi.org/10.1016/j.canlet.2015.03.041.
Texto completo da fonteIshiyama, Ken, Yukio Kondo, Eric Wieder, Sijie Lu e Jeffrey Molldrem. "Aberrantly expressed neutrophil elastase (ELA2) in the nucleus and cytoplasm of acute lymphocytic leukemia (ALL) cells cleaves cyclin E (CCNE) into low-molecular-weight forms (LMWFs) yielding novel HLA-A2 restricted determinants (50.28)". Journal of Immunology 178, n.º 1_Supplement (1 de abril de 2007): S95—S96. http://dx.doi.org/10.4049/jimmunol.178.supp.50.28.
Texto completo da fonteBae, Jung Yoon, Jun Kanamune, Dong-Wook Han, Kazuaki Matsumura e Suong-Hyu Hyon. "Reversible Regulation of Cell Cycle-Related Genes by Epigallocatechin Gallate for Hibernation of Neonatal Human Tarsal Fibroblasts". Cell Transplantation 18, n.º 4 (abril de 2009): 459–69. http://dx.doi.org/10.3727/096368909788809776.
Texto completo da fonteShi, Hao, Gao-Feng Liang, Yang Li, Jing-Hua Li, Ai-Hua Jing, Wen-Po Feng, Guang-Da Li, Jing-Xia Du e Shu-Ying Feng. "Preparation and Evaluation of Upconversion Nanoparticles Based miRNA Delivery Carrier in Colon Cancer Mice Model". Journal of Biomedical Nanotechnology 15, n.º 11 (1 de novembro de 2019): 2240–50. http://dx.doi.org/10.1166/jbn.2019.2840.
Texto completo da fonteWang, Ji-fang, Zhuo-na Xi, Hong-jian Su, Zhen Bao e Ya-hong Qiao. "SP1-induced overexpression of LINC00520 facilitates non-small cell lung cancer progression through miR-577/CCNE2 pathway and predicts poor prognosis". Human Cell 34, n.º 3 (11 de março de 2021): 952–64. http://dx.doi.org/10.1007/s13577-021-00518-y.
Texto completo da fonteLin, Ruoyang, Xianfan Lin, Jinming Wu, Tanzhou Chen e Zhiming Huang. "Inhibitory Effects of Rabdosia rubescens in Esophageal Squamous Cell Carcinoma: Network Pharmacology and Experimental Validation". Evidence-Based Complementary and Alternative Medicine 2022 (10 de novembro de 2022): 1–16. http://dx.doi.org/10.1155/2022/2696347.
Texto completo da fonteYang, Bo, Junying Zhang, Yaling Yin e Yuanyuan Zhang. "Network-Based Inference Framework for Identifying Cancer Genes from Gene Expression Data". BioMed Research International 2013 (2013): 1–12. http://dx.doi.org/10.1155/2013/401649.
Texto completo da fonteBorradaile, Nica M., e J. Geoffrey Pickering. "Polyploidy impairs human aortic endothelial cell function and is prevented by nicotinamide phosphoribosyltransferase". American Journal of Physiology-Cell Physiology 298, n.º 1 (janeiro de 2010): C66—C74. http://dx.doi.org/10.1152/ajpcell.00357.2009.
Texto completo da fonteZeng, Lu, Xiude Fan, Xiaoyun Wang, Huan Deng, Kun Zhang, Xiaoge Zhang, Shan He, Na Li, Qunying Han e Zhengwen Liu. "Bioinformatics Analysis based on Multiple Databases Identifies Hub Genes Associated with Hepatocellular Carcinoma". Current Genomics 20, n.º 5 (3 de dezembro de 2019): 349–61. http://dx.doi.org/10.2174/1389202920666191011092410.
Texto completo da fonteLin, Chiao-Yun, Ren-Chin Wu, Chen-Yang Huang, Chyong-Huey Lai, An-Shine Chao, Hsin-Pai Li, Chia-Lung Tsai, Elizabeth Joo-Wen Kuek, Cheng-Lung Hsu e Angel Chao. "A Patient-Derived Xenograft Model of Dedifferentiated Endometrial Carcinoma: A Proof-of-Concept Study for the Identification of New Molecularly Informed Treatment Approaches". Cancers 13, n.º 23 (26 de novembro de 2021): 5962. http://dx.doi.org/10.3390/cancers13235962.
Texto completo da fonteHaydé, Vergara-Castañeda, Guevara-González Ramón, Guevara-Olvera Lorenzo, Oomah B. Dave, Reynoso-Camacho Rosalía, Wiersma Paul e Loarca-Piña Guadalupe. "Non-digestible fraction of beans (Phaseolus vulgarisL.) modulates signalling pathway genes at an early stage of colon cancer in Sprague–Dawley rats". British Journal of Nutrition 108, S1 (23 de agosto de 2012): S145—S154. http://dx.doi.org/10.1017/s0007114512000785.
Texto completo da fonte