Artigos de revistas sobre o tema "Cell mechanics, mechanical properties, biophysics, physiology"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Cell mechanics, mechanical properties, biophysics, physiology".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Wyss, Hans M., Joel M. Henderson, Fitzroy J. Byfield, Leslie A. Bruggeman, Yaxian Ding, Chunfa Huang, Jung Hee Suh et al. "Biophysical properties of normal and diseased renal glomeruli". American Journal of Physiology-Cell Physiology 300, n.º 3 (março de 2011): C397—C405. http://dx.doi.org/10.1152/ajpcell.00438.2010.
Texto completo da fonteKang, Min Kyeong, e Jin-Won Park. "Ectoine Effect on Mechanical Properties of Vesicles in Aqueous Solution". Journal of Membrane Biology 255, n.º 1 (9 de novembro de 2021): 55–59. http://dx.doi.org/10.1007/s00232-021-00208-8.
Texto completo da fontePark, Jin-Won. "Ca2+-Induced Effect on Mechanical Properties of Sulfatide-Incorporated Vesicles". Journal of Membrane Biology 238, n.º 1-3 (19 de novembro de 2010): 63–68. http://dx.doi.org/10.1007/s00232-010-9319-5.
Texto completo da fonteSoveral *, , R.I. Macey, G. "Mechanical Properties of Brush Border Membrane Vesicles from Kidney Proximal Tubule". Journal of Membrane Biology 158, n.º 3 (1 de agosto de 1997): 209–17. http://dx.doi.org/10.1007/s002329900258.
Texto completo da fonteZhou, Guoqiao, Bokai Zhang, Liyu Wei, Han Zhang, Massimiliano Galluzzi e Jiangyu Li. "Spatially Resolved Correlation between Stiffness Increase and Actin Aggregation around Nanofibers Internalized in Living Macrophages". Materials 13, n.º 14 (21 de julho de 2020): 3235. http://dx.doi.org/10.3390/ma13143235.
Texto completo da fonteWu, Li, Jie Huang, Xiaoxue Yu, Xiaoqing Zhou, Chaoye Gan, Ming Li e Yong Chen. "AFM of the Ultrastructural and Mechanical Properties of Lipid-Raft-Disrupted and/or Cold-Treated Endothelial Cells". Journal of Membrane Biology 247, n.º 2 (8 de janeiro de 2014): 189–200. http://dx.doi.org/10.1007/s00232-013-9624-x.
Texto completo da fonteLoewith, Robbie, Aurélien Roux e Olivier Pertz. "Chemical-Biology-derived in vivo Sensors: Past, Present, and Future". CHIMIA 75, n.º 12 (9 de dezembro de 2021): 1017. http://dx.doi.org/10.2533/chimia.2021.1017.
Texto completo da fonteChen, Cheng, Dhananjay T. Tambe, Linhong Deng e Liu Yang. "Biomechanical properties and mechanobiology of the articular chondrocyte". American Journal of Physiology-Cell Physiology 305, n.º 12 (15 de dezembro de 2013): C1202—C1208. http://dx.doi.org/10.1152/ajpcell.00242.2013.
Texto completo da fonteFay, Meredith E., David R. Myers, Amit Kumar, Rebecca Byler, Todd A. Sulchek, Michael D. Graham e Wilbur A. Lam. "White Blood Cell Mechanics Mediate Glucocorticoid- and Catecholamine-Induced Demargination". Blood 122, n.º 21 (15 de novembro de 2013): 3459. http://dx.doi.org/10.1182/blood.v122.21.3459.3459.
Texto completo da fonteAlessandra, Galli, Marku Algerta, Marciani Paola, Schulte Carsten, Lenardi Cristina, Milani Paolo, Maffioli Elisa, Tedeschi Gabriella e Perego Carla. "Shaping Pancreatic β-Cell Differentiation and Functioning: The Influence of Mechanotransduction". Cells 9, n.º 2 (11 de fevereiro de 2020): 413. http://dx.doi.org/10.3390/cells9020413.
Texto completo da fonteGrigg, P. "Biophysical studies of mechanoreceptors". Journal of Applied Physiology 60, n.º 4 (1 de abril de 1986): 1107–15. http://dx.doi.org/10.1152/jappl.1986.60.4.1107.
Texto completo da fonteAhmed, Adeel, Indranil M. Joshi, Mehran Mansouri, Nuzhet N. N. Ahamed, Meng-Chun Hsu, Thomas R. Gaborski e Vinay V. Abhyankar. "Engineering fiber anisotropy within natural collagen hydrogels". American Journal of Physiology-Cell Physiology 320, n.º 6 (1 de junho de 2021): C1112—C1124. http://dx.doi.org/10.1152/ajpcell.00036.2021.
Texto completo da fonteMohandas, Narla, e Patrick G. Gallagher. "Red cell membrane: past, present, and future". Blood 112, n.º 10 (15 de novembro de 2008): 3939–48. http://dx.doi.org/10.1182/blood-2008-07-161166.
Texto completo da fonteBrowe, David M., e Clive M. Baumgarten. "Stretch of β1 Integrin Activates an Outwardly Rectifying Chloride Current via FAK and Src in Rabbit Ventricular Myocytes". Journal of General Physiology 122, n.º 6 (10 de novembro de 2003): 689–702. http://dx.doi.org/10.1085/jgp.200308899.
Texto completo da fonteOakes, Patrick W., Tamara C. Bidone, Yvonne Beckham, Austin V. Skeeters, Guillermina R. Ramirez-San Juan, Stephen P. Winter, Gregory A. Voth e Margaret L. Gardel. "Lamellipodium is a myosin-independent mechanosensor". Proceedings of the National Academy of Sciences 115, n.º 11 (27 de fevereiro de 2018): 2646–51. http://dx.doi.org/10.1073/pnas.1715869115.
Texto completo da fonteWang, Junjie, e Gerhard Dahl. "Pannexin1: a multifunction and multiconductance and/or permeability membrane channel". American Journal of Physiology-Cell Physiology 315, n.º 3 (1 de setembro de 2018): C290—C299. http://dx.doi.org/10.1152/ajpcell.00302.2017.
Texto completo da fonteMierke, Claudia Tanja. "Cell Mechanics Drives Migration Modes". Biophysical Reviews and Letters 15, n.º 01 (março de 2020): 1–34. http://dx.doi.org/10.1142/s1793048020300017.
Texto completo da fonteIsabey, D. "Advances in pulmonary cell mechanics: Mechanical properties, structure and function". Journal of Biomechanics 39 (janeiro de 2006): S268. http://dx.doi.org/10.1016/s0021-9290(06)84027-3.
Texto completo da fonteObraztsov, Viktor V., Gerald G. Neslund, Elisabeth S. Kornbrust, Stephen F. Flaim e Catherine M. Woods. "In vitro cellular effects of perfluorochemicals correlate with their lipid solubility". American Journal of Physiology-Lung Cellular and Molecular Physiology 278, n.º 5 (1 de maio de 2000): L1018—L1024. http://dx.doi.org/10.1152/ajplung.2000.278.5.l1018.
Texto completo da fonteBlanchoin, Laurent, Rajaa Boujemaa-Paterski, Cécile Sykes e Julie Plastino. "Actin Dynamics, Architecture, and Mechanics in Cell Motility". Physiological Reviews 94, n.º 1 (janeiro de 2014): 235–63. http://dx.doi.org/10.1152/physrev.00018.2013.
Texto completo da fonteVockeroth, Dan, Lasantha Gunasekara, Matthias Amrein, Fred Possmayer, James F. Lewis e Ruud A. W. Veldhuizen. "Role of cholesterol in the biophysical dysfunction of surfactant in ventilator-induced lung injury". American Journal of Physiology-Lung Cellular and Molecular Physiology 298, n.º 1 (janeiro de 2010): L117—L125. http://dx.doi.org/10.1152/ajplung.00218.2009.
Texto completo da fonteSwerup, C., e B. Rydqvist. "A mathematical model of the crustacean stretch receptor neuron. Biomechanics of the receptor muscle, mechanosensitive ion channels, and macrotransducer properties". Journal of Neurophysiology 76, n.º 4 (1 de outubro de 1996): 2211–20. http://dx.doi.org/10.1152/jn.1996.76.4.2211.
Texto completo da fonteRyazantsev, Mikhail N., Dmitrii M. Nikolaev, Andrey V. Struts e Michael F. Brown. "Quantum Mechanical and Molecular Mechanics Modeling of Membrane-Embedded Rhodopsins". Journal of Membrane Biology 252, n.º 4-5 (30 de setembro de 2019): 425–49. http://dx.doi.org/10.1007/s00232-019-00095-0.
Texto completo da fonteBidhendi, Amir J., e Anja Geitmann. "Methods to quantify primary plant cell wall mechanics". Journal of Experimental Botany 70, n.º 14 (1 de julho de 2019): 3615–48. http://dx.doi.org/10.1093/jxb/erz281.
Texto completo da fonteKuck, Lennart, Jason N. Peart e Michael J. Simmonds. "Active modulation of human erythrocyte mechanics". American Journal of Physiology-Cell Physiology 319, n.º 2 (1 de agosto de 2020): C250—C257. http://dx.doi.org/10.1152/ajpcell.00210.2020.
Texto completo da fonteEmig, Ramona, Callum M. Zgierski-Johnston, Viviane Timmermann, Andrew J. Taberner, Martyn P. Nash, Peter Kohl e Rémi Peyronnet. "Passive myocardial mechanical properties: meaning, measurement, models". Biophysical Reviews 13, n.º 5 (outubro de 2021): 587–610. http://dx.doi.org/10.1007/s12551-021-00838-1.
Texto completo da fonteWang, Qianxi, Kawa Manmi e Kuo-Kang Liu. "Cell mechanics in biomedical cavitation". Interface Focus 5, n.º 5 (6 de outubro de 2015): 20150018. http://dx.doi.org/10.1098/rsfs.2015.0018.
Texto completo da fonteHaase, Kristina, e Andrew E. Pelling. "Investigating cell mechanics with atomic force microscopy". Journal of The Royal Society Interface 12, n.º 104 (março de 2015): 20140970. http://dx.doi.org/10.1098/rsif.2014.0970.
Texto completo da fonteYalcin, H. C., K. M. Hallow, J. Wang, M. T. Wei, H. D. Ou-Yang e S. N. Ghadiali. "Influence of cytoskeletal structure and mechanics on epithelial cell injury during cyclic airway reopening". American Journal of Physiology-Lung Cellular and Molecular Physiology 297, n.º 5 (novembro de 2009): L881—L891. http://dx.doi.org/10.1152/ajplung.90562.2008.
Texto completo da fonteGibson, Lorna J. "The hierarchical structure and mechanics of plant materials". Journal of The Royal Society Interface 9, n.º 76 (8 de agosto de 2012): 2749–66. http://dx.doi.org/10.1098/rsif.2012.0341.
Texto completo da fonteKandel, Judith, Martin Picard, Douglas C. Wallace e David M. Eckmann. "Mitochondrial DNA 3243A>G heteroplasmy is associated with changes in cytoskeletal protein expression and cell mechanics". Journal of The Royal Society Interface 14, n.º 131 (junho de 2017): 20170071. http://dx.doi.org/10.1098/rsif.2017.0071.
Texto completo da fonteFathi, Ali, Suzanne M. Mithieux, Hua Wei, Wojciech Chrzanowski, Peter Valtchev, Anthony S. Weiss e Fariba Dehghani. "Elastin based cell-laden injectable hydrogels with tunable gelation, mechanical and biodegradation properties". Biomaterials 35, n.º 21 (julho de 2014): 5425–35. http://dx.doi.org/10.1016/j.biomaterials.2014.03.026.
Texto completo da fonteSun, Hongli, Feng Zhu, Qingang Hu e Paul H. Krebsbach. "Controlling stem cell-mediated bone regeneration through tailored mechanical properties of collagen scaffolds". Biomaterials 35, n.º 4 (janeiro de 2014): 1176–84. http://dx.doi.org/10.1016/j.biomaterials.2013.10.054.
Texto completo da fonteDebrah, Dan O., Julianna E. Debrah, Jamie L. Haney, Jonathan T. McGuane, Michael S. Sacks, Kirk P. Conrad e Sanjeev G. Shroff. "Relaxin regulates vascular wall remodeling and passive mechanical properties in mice". Journal of Applied Physiology 111, n.º 1 (julho de 2011): 260–71. http://dx.doi.org/10.1152/japplphysiol.00845.2010.
Texto completo da fonteCai, Shuang, Lidija Pestic-Dragovich, Martha E. O’Donnell, Ning Wang, Donald Ingber, Elliot Elson e Primal De Lanerolle. "Regulation of cytoskeletal mechanics and cell growth by myosin light chain phosphorylation". American Journal of Physiology-Cell Physiology 275, n.º 5 (1 de novembro de 1998): C1349—C1356. http://dx.doi.org/10.1152/ajpcell.1998.275.5.c1349.
Texto completo da fonteTung, Leslie, e Sanjay S. Parikh. "Cardiac Mechanics at the Cellular Level". Journal of Biomechanical Engineering 113, n.º 4 (1 de novembro de 1991): 492–95. http://dx.doi.org/10.1115/1.2895431.
Texto completo da fonteRydholm, Susanna, Gordon Zwartz, Jacob M. Kowalewski, Padideh Kamali-Zare, Thomas Frisk e Hjalmar Brismar. "Mechanical properties of primary cilia regulate the response to fluid flow". American Journal of Physiology-Renal Physiology 298, n.º 5 (maio de 2010): F1096—F1102. http://dx.doi.org/10.1152/ajprenal.00657.2009.
Texto completo da fonteDixon, P. G., e L. J. Gibson. "The structure and mechanics of Moso bamboo material". Journal of The Royal Society Interface 11, n.º 99 (6 de outubro de 2014): 20140321. http://dx.doi.org/10.1098/rsif.2014.0321.
Texto completo da fonteLopez, Michael A., Sherina Bontiff, Mary Adeyeye, Aziz I. Shaibani, Matthew S. Alexander, Shari Wynd e Aladin M. Boriek. "Mechanics of dystrophin deficient skeletal muscles in very young mice and effects of age". American Journal of Physiology-Cell Physiology 321, n.º 2 (1 de agosto de 2021): C230—C246. http://dx.doi.org/10.1152/ajpcell.00155.2019.
Texto completo da fonteBomzon, Ze’ev, Martin M. Knight, Dan L. Bader e Eitan Kimmel. "Mitochondrial Dynamics in Chondrocytes and Their Connection to the Mechanical Properties of the Cytoplasm". Journal of Biomechanical Engineering 128, n.º 5 (12 de fevereiro de 2006): 674–79. http://dx.doi.org/10.1115/1.2246239.
Texto completo da fonteBonnet, Isabelle, Philippe Marcq, Floris Bosveld, Luc Fetler, Yohanns Bellaïche e François Graner. "Mechanical state, material properties and continuous description of an epithelial tissue". Journal of The Royal Society Interface 9, n.º 75 (23 de maio de 2012): 2614–23. http://dx.doi.org/10.1098/rsif.2012.0263.
Texto completo da fonteLu, Shing-Hwa, Michael S. Sacks, Steve Y. Chung, D. Claire Gloeckner, Ryan Pruchnic, Johnny Huard, William C. de Groat e Michael B. Chancellor. "Biaxial mechanical properties of muscle-derived cell seeded small intestinal submucosa for bladder wall reconstitution". Biomaterials 26, n.º 4 (fevereiro de 2005): 443–49. http://dx.doi.org/10.1016/j.biomaterials.2004.05.006.
Texto completo da fonteTong, Xinming, e Fan Yang. "Engineering interpenetrating network hydrogels as biomimetic cell niche with independently tunable biochemical and mechanical properties". Biomaterials 35, n.º 6 (fevereiro de 2014): 1807–15. http://dx.doi.org/10.1016/j.biomaterials.2013.11.064.
Texto completo da fonteRobles, Luis, e Mario A. Ruggero. "Mechanics of the Mammalian Cochlea". Physiological Reviews 81, n.º 3 (1 de julho de 2001): 1305–52. http://dx.doi.org/10.1152/physrev.2001.81.3.1305.
Texto completo da fonteAn, Steven S., e Jeffrey J. Fredberg. "Biophysical basis for airway hyperresponsivenessThis article is one of a selection of papers published in the Special Issue on Recent Advances in Asthma Research." Canadian Journal of Physiology and Pharmacology 85, n.º 7 (julho de 2007): 700–714. http://dx.doi.org/10.1139/y07-059.
Texto completo da fonteShi, Yu, Shankar Sivarajan, Katherine M. Xiang, Geran M. Kostecki, Leslie Tung, John C. Crocker e Daniel H. Reich. "Pervasive cytoquakes in the actomyosin cortex across cell types and substrate stiffness". Integrative Biology 13, n.º 10 (outubro de 2021): 246–57. http://dx.doi.org/10.1093/intbio/zyab017.
Texto completo da fonteChan, C. J., G. Whyte, L. Boyde, G. Salbreux e J. Guck. "Impact of heating on passive and active biomechanics of suspended cells". Interface Focus 4, n.º 2 (6 de abril de 2014): 20130069. http://dx.doi.org/10.1098/rsfs.2013.0069.
Texto completo da fonteDailey, H. L., L. M. Ricles, H. C. Yalcin e S. N. Ghadiali. "Image-based finite element modeling of alveolar epithelial cell injury during airway reopening". Journal of Applied Physiology 106, n.º 1 (janeiro de 2009): 221–32. http://dx.doi.org/10.1152/japplphysiol.90688.2008.
Texto completo da fonteMacQueen, Luke, Yu Sun e Craig A. Simmons. "Mesenchymal stem cell mechanobiology and emerging experimental platforms". Journal of The Royal Society Interface 10, n.º 84 (6 de julho de 2013): 20130179. http://dx.doi.org/10.1098/rsif.2013.0179.
Texto completo da fonteMovilla, Nieves, Clara Valero, Carlos Borau e Jose Manuel García-Aznar. "Matrix degradation regulates osteoblast protrusion dynamics and individual migration". Integrative Biology 11, n.º 11 (novembro de 2019): 404–13. http://dx.doi.org/10.1093/intbio/zyz035.
Texto completo da fonte