Siga este link para ver outros tipos de publicações sobre o tema: Cell metabolism Regulation.

Artigos de revistas sobre o tema "Cell metabolism Regulation"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Cell metabolism Regulation".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

GAO, Ping, and HaoRan WEI. "Regulation of cancer cell metabolism." SCIENTIA SINICA Vitae 47, no. 1 (January 1, 2017): 132–39. http://dx.doi.org/10.1360/n052016-00334.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Hagel-Bradway, S., and R. Dziak. "Regulation of bone cell metabolism." Journal of Oral Pathology and Medicine 18, no. 6 (July 1989): 344–51. http://dx.doi.org/10.1111/j.1600-0714.1989.tb01564.x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Sun, Xinghui, and Mark W. Feinberg. "Regulation of Endothelial Cell Metabolism." Arteriosclerosis, Thrombosis, and Vascular Biology 35, no. 1 (January 2015): 13–15. http://dx.doi.org/10.1161/atvbaha.114.304869.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Cairns, Rob A., Isaac S. Harris, and Tak W. Mak. "Regulation of cancer cell metabolism." Nature Reviews Cancer 11, no. 2 (January 24, 2011): 85–95. http://dx.doi.org/10.1038/nrc2981.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Brynildsen, M. P., W. W. Wong, and J. C. Liao. "Transcriptional regulation and metabolism." Biochemical Society Transactions 33, no. 6 (October 26, 2005): 1423–26. http://dx.doi.org/10.1042/bst0331423.

Texto completo da fonte
Resumo:
Understanding organisms from a systems perspective is essential for predicting cellular behaviour as well as designing gene-metabolic circuits for novel functions. The structure, dynamics and interactions of cellular networks are all vital components of systems biology. To facilitate investigation of these aspects, we have developed an integrative technique called network component analysis, which utilizes mRNA expression and transcriptional network connectivity to determine network component dynamics, functions and interactions. This approach has been applied to elucidate transcription factor
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Pokotylo, I. V. "Lipoxygenases and plant cell metabolism regulation." Ukrainian Biochemical Journal 87, no. 2 (April 27, 2015): 41–55. http://dx.doi.org/10.15407/ubj87.02.041.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Spiegel, Sarah, and Alfred H. Merrill. "Sphingolipid metabolism and cell growth regulation." FASEB Journal 10, no. 12 (October 1996): 1388–97. http://dx.doi.org/10.1096/fasebj.10.12.8903509.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Hough, Kenneth P., Danielle A. Chisolm, and Amy S. Weinmann. "Transcriptional regulation of T cell metabolism." Molecular Immunology 68, no. 2 (December 2015): 520–26. http://dx.doi.org/10.1016/j.molimm.2015.07.038.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Wang, Yin-Hu, Anthony Y. Tao, Martin Vaeth, and Stefan Feske. "Calcium regulation of T cell metabolism." Current Opinion in Physiology 17 (October 2020): 207–23. http://dx.doi.org/10.1016/j.cophys.2020.07.016.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Bailey, Shannon M., Uduak S. Udoh, and Martin E. Young. "Circadian regulation of metabolism." Journal of Endocrinology 222, no. 2 (June 13, 2014): R75—R96. http://dx.doi.org/10.1530/joe-14-0200.

Texto completo da fonte
Resumo:
In association with sleep–wake and fasting–feeding cycles, organisms experience dramatic oscillations in energetic demands and nutrient supply. It is therefore not surprising that various metabolic parameters, ranging from the activity status of molecular energy sensors to circulating nutrient levels, oscillate in time-of-day-dependent manners. It has become increasingly clear that rhythms in metabolic processes are not simply in response to daily environmental/behavioral influences, but are driven in part by cell autonomous circadian clocks. By synchronizing the cell with its environment, clo
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Plas, David R., and Craig B. Thompson. "Cell metabolism in the regulation of programmed cell death." Trends in Endocrinology & Metabolism 13, no. 2 (March 2002): 75–78. http://dx.doi.org/10.1016/s1043-2760(01)00528-8.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Jiang, Yajian, and Daisuke Nakada. "Cell intrinsic and extrinsic regulation of leukemia cell metabolism." International Journal of Hematology 103, no. 6 (February 20, 2016): 607–16. http://dx.doi.org/10.1007/s12185-016-1958-6.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Boutilier, Robert G., and Ralph A. Ferguson. "Nucleated red cell function: metabolism and pH regulation." Canadian Journal of Zoology 67, no. 12 (December 1, 1989): 2986–93. http://dx.doi.org/10.1139/z89-421.

Texto completo da fonte
Resumo:
The full extent and apportionment of aerobic and anaerobic contributions to energy transduction for membrane pumps associated with cellular pH regulation are very poorly understood. One way of approaching this problem at the cellular level is by using the nucleated erythrocyte as a model cell. Indeed, the aerobic and anaerobic capacity of salmonid erythrocytes and their β-adrenergic mediated pH regulation offers a model "pH regulating system" for examining cellular strategies of response to acute and (or) chronic changes in oxygen availability. Much of our work has focused on the balance betwe
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Kumar, Ajay, Kalyani Pyaram, Emily Yarosz, Shailendra Giri, and Cheong-Hee Chang. "Regulation of NKT cell metabolism by PLZF." Journal of Immunology 200, no. 1_Supplement (May 1, 2018): 167.2. http://dx.doi.org/10.4049/jimmunol.200.supp.167.2.

Texto completo da fonte
Resumo:
Abstract Cellular metabolism and signaling pathways are the key regulators to determine T cell fate, survival and function, particularly during activation. Resting CD4 and CD8 T cells use oxidative phosphorylation as a primary energy source but switches to glycolysis upon activation, which is necessary to produce biomolecules for cell proliferation and function. Failure of this reprogramming is detrimental for T cell mediated immunity. However, little is understood about how NKT cells control their metabolism to survive and function. We found that NKT cells operate distinctly different metabol
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Lukey, Michael J., and Richard A. Cerione. "The regulation of cancer cell glutamine metabolism." Translational Cancer Research 5, S6 (November 2016): S1297—S1298. http://dx.doi.org/10.21037/tcr.2016.11.39.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Kořánová, Tereza, Lukáš Dvořáček, Dana Grebeňová, Pavla Röselová, Adam Obr, and Kateřina Kuželová. "PAK1 and PAK2 in cell metabolism regulation." Journal of Cellular Biochemistry 123, no. 2 (November 8, 2021): 375–89. http://dx.doi.org/10.1002/jcb.30175.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Vüqar qızı Mehdiyeva, Günel. "Regulation of cell metabolism of Chlorella vulgaris." NATURE AND SCIENCE 18, no. 3 (March 19, 2022): 25–28. http://dx.doi.org/10.36719/2707-1146/18/25-28.

Texto completo da fonte
Resumo:
Mikroyosunların inkişaf prosesini məhdudlaşdıran şəraitdə (üzvi və mineral maddələrin çatışmazlığı, müxtəlif stress faktorları - işıq, temperatur və s.) ehtiyat maddə və metabolit toplama qabiliyyəti elmə yaxşı məlumdur. Bu baxımdan son illərdə Chlorella vulgaris hüceyrəsində bu və ya digər məhsulun toplanması istiqamətində metabolizmin məqsədyönlü idarə olunması texnologiyası araşdırılır. Təqdim edilən məqalədə fiziki və kimyəvi faktorlarının yaratdığı müxtəlif stress şəraitində C.vulgaris hüceyrəsində toplanan lipid, karbohidrat, antioksidant molekulları haqqında ümumi məlumat öz əksini tapı
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Ghaffari, Saghi. "Regulation of Hematopoietic Stem Cell Mitochondrial Metabolism." Blood 128, no. 22 (December 2, 2016): SCI—33—SCI—33. http://dx.doi.org/10.1182/blood.v128.22.sci-33.sci-33.

Texto completo da fonte
Resumo:
Abstract Hematopoietic stem cells (HSCs) like most, if not all, adult stem cells are primarily quiescent but have the potential to become highly active on demand. HSC quiescence is maintained by glycolytic metabolism and low levels of reactive oxygen species (ROS), which indicate that mitochondria are relatively inactive in quiescent HSC. However, HSC cycling - and exit of quiescence state - require a swift metabolic switch from glycolysis to mitochondrial oxidative phosphorylation. To improve our understanding of mechanisms that integrate energy metabolism with HSC homeostasis, my laboratory
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Jackowski, Suzanne. "Cell Cycle Regulation of Membrane Phospholipid Metabolism." Journal of Biological Chemistry 271, no. 34 (August 23, 1996): 20219–22. http://dx.doi.org/10.1074/jbc.271.34.20219.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Gibart, Laetitia, Rajeev Khoodeeram, Gilles Bernot, Jean-Paul Comet, and Jean-Yves Trosset. "Regulation of Eukaryote Metabolism: An Abstract Model Explaining the Warburg/Crabtree Effect." Processes 9, no. 9 (August 25, 2021): 1496. http://dx.doi.org/10.3390/pr9091496.

Texto completo da fonte
Resumo:
Adaptation of metabolism is a response of many eukaryotic cells to nutrient heterogeneity in the cell microenvironment. One of these adaptations is the shift from respiratory to fermentative metabolism, also called the Warburg/Crabtree effect. It is a response to a very high nutrient increase in the cell microenvironment, even in the presence of oxygen. Understanding whether this metabolic transition can result from basic regulation signals between components of the central carbon metabolism are the the core question of this work. We use an extension of the René Thomas modeling framework for r
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Steinert, Elizabeth M., Karthik Vasan, and Navdeep S. Chandel. "Mitochondrial Metabolism Regulation of T Cell–Mediated Immunity." Annual Review of Immunology 39, no. 1 (April 26, 2021): 395–416. http://dx.doi.org/10.1146/annurev-immunol-101819-082015.

Texto completo da fonte
Resumo:
Recent evidence supports the notion that mitochondrial metabolism is necessary for T cell activation, proliferation, and function. Mitochondrial metabolism supports T cell anabolism by providing key metabolites for macromolecule synthesis and generating metabolites for T cell function. In this review, we focus on how mitochondrial metabolism controls conventional and regulatory T cell fates and function.
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Alptekin, Ahmet, Bingwei Ye, and Han-Fei Ding. "Transcriptional Regulation of Stem Cell and Cancer Stem Cell Metabolism." Current Stem Cell Reports 3, no. 1 (January 21, 2017): 19–27. http://dx.doi.org/10.1007/s40778-017-0071-y.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Madi, Alaa, and Guoliang Cui. "Regulation of immune cell metabolism by cancer cell oncogenic mutations." International Journal of Cancer 147, no. 2 (February 25, 2020): 307–16. http://dx.doi.org/10.1002/ijc.32888.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Wang, Jian, and Kostas Pantopoulos. "Regulation of cellular iron metabolism." Biochemical Journal 434, no. 3 (February 24, 2011): 365–81. http://dx.doi.org/10.1042/bj20101825.

Texto completo da fonte
Resumo:
Iron is an essential but potentially hazardous biometal. Mammalian cells require sufficient amounts of iron to satisfy metabolic needs or to accomplish specialized functions. Iron is delivered to tissues by circulating transferrin, a transporter that captures iron released into the plasma mainly from intestinal enterocytes or reticuloendothelial macrophages. The binding of iron-laden transferrin to the cell-surface transferrin receptor 1 results in endocytosis and uptake of the metal cargo. Internalized iron is transported to mitochondria for the synthesis of haem or iron–sulfur clusters, whic
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Hoffmann, Lars, Gernot Brauers, Thor Gehrmann, Dieter Häussinger, Ertan Mayatepek, Freimut Schliess, and Bernd C. Schwahn. "Osmotic regulation of hepatic betaine metabolism." American Journal of Physiology-Gastrointestinal and Liver Physiology 304, no. 9 (May 1, 2013): G835—G846. http://dx.doi.org/10.1152/ajpgi.00332.2012.

Texto completo da fonte
Resumo:
Betaine critically contributes to the control of hepatocellular hydration and provides protection of the liver from different kinds of stress. To investigate how the hepatocellular hydration state affects gene expression of enzymes involved in the metabolism of betaine and related organic osmolytes, we used quantitative RT-PCR gene expression studies in rat hepatoma cells as well as metabolic and gene expression profiling in primary hepatocytes of both wild-type and 5,10-methylenetetrahydrofolate reductase (MTHFR)-deficient mice. Anisotonic incubation caused coordinated adaptive changes in the
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

Daddaoua, Abdelali, Tino Krell, and Juan-Luis Ramos. "Regulation of Glucose Metabolism inPseudomonas." Journal of Biological Chemistry 284, no. 32 (June 8, 2009): 21360–68. http://dx.doi.org/10.1074/jbc.m109.014555.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Young, Andrew A. "Amylin regulation of fuel metabolism." Journal of Cellular Biochemistry 55, S1994A (1994): 12–18. http://dx.doi.org/10.1002/jcb.240550003.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

Wang, Fang, Dahai Zhang, Andrea Wan, and Brian Rodrigues. "Endothelial Cell Regulation of Cardiac Metabolism Following Diabetes." Cardiovascular & Hematological Disorders-Drug Targets 14, no. 2 (August 31, 2014): 121–25. http://dx.doi.org/10.2174/1871529x14666140505123221.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

McHugh, Jessica. "T cell metabolism connects complement and autoimmune regulation." Nature Reviews Rheumatology 14, no. 7 (May 30, 2018): 383. http://dx.doi.org/10.1038/s41584-018-0027-3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Brahimi-Horn, M. Christiane, and Jacques Pouysségur. "Hypoxia in cancer cell metabolism and pH regulation." Essays in Biochemistry 43 (August 10, 2007): 165–78. http://dx.doi.org/10.1042/bse0430165.

Texto completo da fonte
Resumo:
At a molecular level, hypoxia induces the stabilization and activation of the α-subunit of an α/β heterodimeric transcription factor, appropriately termed HIF (hypoxia-inducible factor). Hypoxia is encountered, in particular, in tumour tissues, as a result of an insufficient and defective vasculature present in a highly proliferative tumour mass. In this context the active HIF heterodimer binds to and induces a panel of genes that lead to modification in a vast range of cellular functions that allow cancer cells to not only survive but to continue to proliferate and metastasize. Therefore HIF
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Friedman, Susan J., Heidi Bokesch, and Philip Skehan. "The regulation of sterol metabolism by cell interactions." Experimental Cell Research 172, no. 2 (October 1987): 463–73. http://dx.doi.org/10.1016/0014-4827(87)90404-6.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Hu, Zhilin, Qiang Zou, and Bing Su. "Regulation of T cell immunity by cellular metabolism." Frontiers of Medicine 12, no. 4 (August 2018): 463–72. http://dx.doi.org/10.1007/s11684-018-0668-2.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Eelen, Guy, Pauline de Zeeuw, Lucas Treps, Ulrike Harjes, Brian W. Wong, and Peter Carmeliet. "Endothelial Cell Metabolism." Physiological Reviews 98, no. 1 (January 1, 2018): 3–58. http://dx.doi.org/10.1152/physrev.00001.2017.

Texto completo da fonte
Resumo:
Endothelial cells (ECs) are more than inert blood vessel lining material. Instead, they are active players in the formation of new blood vessels (angiogenesis) both in health and (life-threatening) diseases. Recently, a new concept arose by which EC metabolism drives angiogenesis in parallel to well-established angiogenic growth factors (e.g., vascular endothelial growth factor). 6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3-driven glycolysis generates energy to sustain competitive behavior of the ECs at the tip of a growing vessel sprout, whereas carnitine palmitoyltransferase 1a-con
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Soboll, Sibylle. "Regulation of energy metabolism in liver." Journal of Bioenergetics and Biomembranes 27, no. 6 (December 1995): 571–82. http://dx.doi.org/10.1007/bf02111655.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Ma, Qing, Jing Wang, Yaoyao Ren, Fanlu Meng, and Lili Zeng. "Pathological Mechanistic Studies of Osimertinib Resistance in Non-Small-Cell Lung Cancer Cells Using an Integrative Metabolomics-Proteomics Analysis." Journal of Oncology 2020 (March 17, 2020): 1–12. http://dx.doi.org/10.1155/2020/6249829.

Texto completo da fonte
Resumo:
Background. Osimertinib is the first-line therapeutic option for the T790M-mutant non-small-cell lung cancer and the acquired resistance obstructs its application. It is an urgent challenge to identify the potential mechanisms of osimertinib resistance for uncovering some novel therapeutic approaches. Methods. In the current study, the cell metabolomics based on ultra-high-performance liquid chromatography coupled with linear ion trap-Orbitrap mass spectrometry and the qualitative and tandem mass tags quantitative proteomics were performed. Results. 54 differential metabolites and 195 differen
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

Yan, Jiawei, and Tiffany Horng. "Lipid Metabolism in Regulation of Macrophage Functions." Trends in Cell Biology 30, no. 12 (December 2020): 979–89. http://dx.doi.org/10.1016/j.tcb.2020.09.006.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

Kardassis, Dimitris, Efstathia Thymiakou, and Angeliki Chroni. "Genetics and regulation of HDL metabolism." Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids 1867, no. 1 (January 2022): 159060. http://dx.doi.org/10.1016/j.bbalip.2021.159060.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

Goedeke, Leigh, Alexandre Wagschal, Carlos Fernández-Hernando, and Anders M. Näär. "miRNA regulation of LDL-cholesterol metabolism." Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids 1861, no. 12 (December 2016): 2047–52. http://dx.doi.org/10.1016/j.bbalip.2016.03.007.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Caldez, Matias J., Mikael Bjorklund, and Philipp Kaldis. "Cell cycle regulation in NAFLD: when imbalanced metabolism limits cell division." Hepatology International 14, no. 4 (June 22, 2020): 463–74. http://dx.doi.org/10.1007/s12072-020-10066-6.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Nunnari, Jodi, and Johan Auwerx. "Editorial overview: Cell regulation: Cell biology, fueling a renaissance in metabolism." Current Opinion in Cell Biology 33 (April 2015): vii—viii. http://dx.doi.org/10.1016/j.ceb.2015.02.005.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

Armbruster, Ute, and Deserah D. Strand. "Regulation of chloroplast primary metabolism." Photosynthesis Research 145, no. 1 (June 14, 2020): 1–3. http://dx.doi.org/10.1007/s11120-020-00765-4.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

Mullur, Rashmi, Yan-Yun Liu, and Gregory A. Brent. "Thyroid Hormone Regulation of Metabolism." Physiological Reviews 94, no. 2 (April 2014): 355–82. http://dx.doi.org/10.1152/physrev.00030.2013.

Texto completo da fonte
Resumo:
Thyroid hormone (TH) is required for normal development as well as regulating metabolism in the adult. The thyroid hormone receptor (TR) isoforms, α and β, are differentially expressed in tissues and have distinct roles in TH signaling. Local activation of thyroxine (T4), to the active form, triiodothyronine (T3), by 5′-deiodinase type 2 (D2) is a key mechanism of TH regulation of metabolism. D2 is expressed in the hypothalamus, white fat, brown adipose tissue (BAT), and skeletal muscle and is required for adaptive thermogenesis. The thyroid gland is regulated by thyrotropin releasing hormone
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

Lane, Andrew N., and Teresa W.-M. Fan. "Regulation of mammalian nucleotide metabolism and biosynthesis." Nucleic Acids Research 43, no. 4 (January 27, 2015): 2466–85. http://dx.doi.org/10.1093/nar/gkv047.

Texto completo da fonte
Resumo:
Abstract Nucleotides are required for a wide variety of biological processes and are constantly synthesized denovo in all cells. When cells proliferate, increased nucleotide synthesis is necessary for DNA replication and for RNA production to support protein synthesis at different stages of the cell cycle, during which these events are regulated at multiple levels. Therefore the synthesis of the precursor nucleotides is also strongly regulated at multiple levels. Nucleotide synthesis is an energy intensive process that uses multiple metabolic pathways across different cell compartments and sev
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

Tiburcio, Antonio F., Teresa Altabella, Antoni Borrell, and Carles Masgrau. "Polyamine metabolism and its regulation." Physiologia Plantarum 100, no. 3 (July 1997): 664–74. http://dx.doi.org/10.1111/j.1399-3054.1997.tb03073.x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

Arfin, Saniya, Niraj Kumar Jha, Saurabh Kumar Jha, Kavindra Kumar Kesari, Janne Ruokolainen, Shubhadeep Roychoudhury, Brijesh Rathi, and Dhruv Kumar. "Oxidative Stress in Cancer Cell Metabolism." Antioxidants 10, no. 5 (April 22, 2021): 642. http://dx.doi.org/10.3390/antiox10050642.

Texto completo da fonte
Resumo:
Reactive oxygen species (ROS) are important in regulating normal cellular processes whereas deregulated ROS leads to the development of a diseased state in humans including cancers. Several studies have been found to be marked with increased ROS production which activates pro-tumorigenic signaling, enhances cell survival and proliferation and drives DNA damage and genetic instability. However, higher ROS levels have been found to promote anti-tumorigenic signaling by initiating oxidative stress-induced tumor cell death. Tumor cells develop a mechanism where they adjust to the high ROS by expre
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

Thurnher, Martin, and Georg Gruenbacher. "T lymphocyte regulation by mevalonate metabolism." Science Signaling 8, no. 370 (March 31, 2015): re4. http://dx.doi.org/10.1126/scisignal.2005970.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

van Echten, G., and K. Sandhoff. "Ganglioside metabolism. Enzymology, Topology, and regulation." Journal of Biological Chemistry 268, no. 8 (March 1993): 5341–44. http://dx.doi.org/10.1016/s0021-9258(18)53324-x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

McClay, Joseph L. "Epigenetic regulation of drug metabolism in aging." Aging 13, no. 13 (July 11, 2021): 16898–99. http://dx.doi.org/10.18632/aging.203312.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

Stouthamer, A. H. "Metabolic regulation including anaerobic metabolism inParacoccus denitrificans." Journal of Bioenergetics and Biomembranes 23, no. 2 (April 1991): 163–85. http://dx.doi.org/10.1007/bf00762216.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

Yamaguchi, Shinjiro. "Gibberellin Metabolism and its Regulation." Annual Review of Plant Biology 59, no. 1 (June 2008): 225–51. http://dx.doi.org/10.1146/annurev.arplant.59.032607.092804.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!