Siga este link para ver outros tipos de publicações sobre o tema: Clasificación automática.

Teses / dissertações sobre o tema "Clasificación automática"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 30 melhores trabalhos (teses / dissertações) para estudos sobre o assunto "Clasificación automática".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja as teses / dissertações das mais diversas áreas científicas e compile uma bibliografia correta.

1

Peña, Pachamango Denis Bryan. "Sistema mecatrónico para la clasificación automática de cubiertos". Bachelor's thesis, Pontificia Universidad Católica del Perú, 2014. http://tesis.pucp.edu.pe/repositorio/handle/123456789/5760.

Texto completo da fonte
Resumo:
Las empresas de catering de alimentos brindan sus servicios a diversos tipos de clientes, ya sean de transporte aéreo, marítimo y/o ferroviario, empresas industriales, mineras, hospitales e instituciones educativas [1]. Considerando la cantidad de clientes que poseen, este tipo de empresas preparan y comercializan aproximadamente entre 500 y 65,000 platos por eventos y/o pedidos en un día [1][2][3]. Esto incluye necesariamente el uso de 500 a 65,000 unidades de cuchillos, cucharas, cucharitas y tenedores, los cuales deben estar lavados, secados y clasificados según su tipo. En cuanto al proceso de clasificado, una persona se demora, haciendo uso de su velocidad máxima, aproximadamente 2 minutos por cada 100 cubiertos (anexo 2). Es decir, a las grandes empresas de catering les toma 21.5 horas-hombre por día realizar esta actividad (65,000 cubiertos). Además, este tipo de trabajo involucra un movimiento repetitivo de los brazos de trabajador, quien podría padecer enfermedades disergonómicas, tal como se indica en la Norma Básica de Ergonomía y de Procedimiento de Evaluación de Riesgo Disergonómico (anexo 1) establecido por El Ministerio de Trabajo y Promoción del Empleo [4]. Ante lo expuesto es necesario plantear una alternativa de mejora de este proceso. En la presente tesis se propone el diseño de una máquina clasificadora automática de cubiertos, de tal forma que se brinde la facilidad de realizar el proceso de clasificación, eliminando posibles problemas de salud de los trabajadores. Este sistema se encarga de clasificar los cuatro principales tipos de cubiertos (cuchillo, cuchara, cucharita y tenedor) dentro de las dimensiones de 12cm a 21 cm de largo, 1,5cm a 4,5 cm de ancho y alto 0.1 a 3cm (anexo 3). Estos son depositados con una misma orientación en recipientes individuales para cada artículo. Su diseño consta de cuatro niveles dispuestos de manera vertical. El Nivel 1 sirve como depósito de cubiertos sin clasificar y dosificador mediante el movimiento vaivén de una banda transportadora. En el Nivel 2 se da lugar a la identificación del tipo y orientación del cubierto mediante el procesamiento de imágenes adquiridas por una cámara digital. Continuando con el proceso, en el Nivel 3 se realiza, en caso sea necesario, el cambio de orientación del cubierto por medio de unas paletas; y la posterior clasificación de los artículos. Finalmente, en el Nivel 4 se recepciona a cada cubierto en el recipiente correspondiente a su tipo. Esta máquina posee una velocidad de clasificación ligeramente superior a la velocidad máxima de una persona (anexo 6). Cabe mencionar que, a diferencia de la persona, la máquina mantendrá una velocidad constante durante todo el proceso. Además, se mejora la calidad de higiene de los cubiertos pues el proceso evita el contacto humano. Por otro lado, el consumo eléctrico de este sistema es 40W (anexo 10). Considerando que el precio de 1,000W es de US$ 7.4 centavos para el consumo industrial [6], el costo de funcionamiento eléctrico del sistema por hora (US$ 0.296) es muy inferior al costo de una hora-hombre (US$ 1.39) [7]. Por estos beneficios, el uso de esa máquina resulta rentable.
Tesis
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Brown, Manrique Kevin. "Caracterización y clasificación automática de ríos en imágenes satelitales". Bachelor's thesis, Pontificia Universidad Católica del Perú, 2017. http://tesis.pucp.edu.pe/repositorio/handle/123456789/8806.

Texto completo da fonte
Resumo:
En los últimos años, el fenómeno conocido como cambio climático se está volviendo cada vez más notorio. Como resultado de este fenómeno, uno de los sectores que se verá más afectado será el de los recursos hídricos debido al impacto que se tendrá sobre el ciclo hidrológico y en los sistemas de gestión de agua, y a través de estos, en los sistemas socioeconómicos. Uno de los impactos conocidos es el conjunto de modificaciones en los patrones de precipitación y caudal de los ríos que afectarán a todos sus usuarios. Los caudales de ríos se forman por sedimentos que han sido y están siendo transportados por agua que fluye y por lo general se pueden clasificar en 4 formas básicas: rectos, meandros, trenzados y anastomosados. Es importante el tener reconocidos los distintos ríos y para ello no basta con conocer su localización sino además tener mapeadas las características de estos según su canal aluvial. Uno de los métodos tradicionales para caracterizar la morfología de un río (anchura, sinuosidad, características de inundación, etc.) es a través de trabajo de campo, que es costoso y demanda tiempo. Estos métodos no sólo consumen tiempo, sino que además, son extremadamente difíciles de llevar a cabo debido a que están sujetos a factores como inundaciones, mareas y tormentas que pueden hacer el lugar inaccesible y peligroso para recolectar información. El presente proyecto de fin de carrera propone una solución ante el problema de la dificultad y alto costo que supone la realización del trabajo de campo que permita caracterizar la morfología de un río. La solución planteada es una nueva técnica computacional para la caracterización automática de la morfología de los ríos, Dimensión Fractal Multi-escala, el cual aprovecha las características fractales de formación de elementos naturales como los ríos. El proyecto inicia con un proceso de limpieza de ruido a los datos de entrada que son esqueletos de ríos, para luego, por cada uno, aplicar el método de Crossing Number para obtener la multiplicidad de canal. Seguidamente, se elaborará una Curva Fractal aplicando el método de Dimensión Fractal Multiescala y de la curva obtenida se extraerán puntos de interés para generar un vector de características necesario para la clasificación. A continuación, se entrenará un clasificador empleando los vectores de características para generar un modelo predictivo. Finalmente, el modelo será evaluado mediante la clasificación de un nuevo esqueleto de río.
Tesis
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Delgado, Valverde Lizbeth Alejandra. "Identificación Automática de hojas Utilizando un Clasificador Bayesiano". Tesis de Licenciatura, Universidad Autónoma del Estado de México, 2017. http://hdl.handle.net/20.500.11799/79819.

Texto completo da fonte
Resumo:
La identificación automática de plantas es un reto actual muy importante. El desarrollo de sistemas que identifiquen de forma automática las plantas impactará en amplias y distintas áreas como son: la alimentación, medicina, industria, medio ambiente, aduanas. En la literatura actual, varias técnicas han sido propuestas con el objetivo de identificar plantas en diversos campos de aplicación. En este proyecto, se desarrollará un sistema de reconocimiento que permita identificar plantas a partir de imágenes en una base de datos con imágenes con múltiples clases de plantas. Debido a la cantidad de imágenes se requieren descriptores de diferentes tipos que ayuden a aumentar el margen de discriminación entre plantas y mejorar así el desempeño del clasificador. Sin embargo, no solo es importante mejorar el desempeño de los clasificadores, una parte fundamental de los clasificadores es el tiempo de respuesta. Muchos campos de aplicación actuales requieren que la respuesta sea casi inmediata. El presente trabajo propone una solución para la identificación de plantas a partir de sus hojas utilizando un clasificador Bayesiano. Los algoritmos existentes en el estado del arte para la identificación de plantas a partir de hojas utilizan diferentes técnicas de aprendizaje máquina que van desde redes neuronales, Máquinas de Soporte Vectorial, Árboles de decisión hasta clasificadores bayesianos. En este caso, se utilizó un clasificador bayesiano por su velocidad de respuesta y precisión. La presente tesis muestra un análisis comparativo de los tiempos de respuesta del clasificador Bayesiano en comparación con algunos clasificadores del estado del arte actual.
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Martín, Fernández Josep Antoni. "Medidas de diferencia y clasificación automática no paramétrica de datos composicionales". Doctoral thesis, Universitat Politècnica de Catalunya, 2001. http://hdl.handle.net/10803/6704.

Texto completo da fonte
Resumo:
Es muy frecuente encontrar datos de tipo composicional en disciplinas tan dispares como son, entre otras, las ciencias de la tierra, la medicina, y la economía. También es frecuente en estos ámbitos el uso de técnicas de clasificación no paramétrica para la detección de agrupaciones naturales en los datos. Sin embargo, una búsqueda bibliográfica bastante exhaustiva y la presentación de resultados preliminares sobre el tema en congresos de ámbito internacional han permitido constatar la inexistencia de un cuerpo teórico y metodológico apropiado que permita desarrollar pautas y recomendaciones a seguir en el momento de realizar una clasificación no paramétrica de datos composicionales. Por estos motivos se ha elegido como tema de tesis la adaptación y desarrollo de métodos de agrupación adecuados a datos de naturaleza composicional, es decir, datos tales que el valor de cada una de sus componentes expresa una proporción respecto de un total. El título de la misma, "Medidas de diferencia y clasificación automática no paramétrica de datos composicionales", recoge no sólo este propósito, sino que añade la expresión "medidas de diferencia" con el propósito de reflejar el peso específico importante que tiene el estudio de este tipo de medida en el desarrollo del trabajo. La expresión "no paramétrica'' se refiere a que en la misma no se considerarán técnicas de clasificación que presuponen la existencia de un modelo de distribución de probabilidad para las observaciones objeto de la agrupación.

La memoria de la tesis se inicia con un capítulo introductorio donde se presentan los elementos básicos de las técnicas de clasificación automática no paramétrica. Se pone especial énfasis en aquellos elementos susceptibles de ser adaptados para su aplicación en clasificaciones de datos composicionales. En el segundo capítulo se aborda el análisis de los conceptos más importantes en torno a los datos composicionales. En este capítulo, los esfuerzos se han concentrado principalmente en estudiar las medidas de diferencia entre datos composicionales junto con las medidas de tendencia central y de dispersión. Con ello se dispone de las herramientas necesarias para proceder al desarrollo de una metodología apropiada para la clasificación no paramétrica de datos composicionales, consistente en incorporar los elementos anteriores a las técnicas habituales y adaptarlas en la medida de lo necesario. El tercer capítulo se dedica exclusivamente a proponer nuevas medidas de diferencia entre datos composicionales basadas en las medidas de divergencia entre distribuciones de probabilidad. En el cuarto capítulo se incorporan las peculiaridades de los datos composicionales a las técnicas de clasificación y se exponen las pautas a seguir en el uso práctico de estas técnicas. El capítulo se completa con la aplicación de la metodología expuesta a un caso práctico. En el quinto capítulo de esta tesis se aborda el denominado problema de los ceros. Se analizan los inconvenientes de los métodos usuales de substitución y se propone una nueva fórmula de substitución de los ceros por redondeo. El capítulo finaliza con el estudio de un caso práctico. En el epílogo de esta memoria se presentan las conclusiones del trabajo de investigación y se indican la líneas futuras de trabajo. En los apéndices finales de esta memoria se recogen los conjuntos de datos utilizados en los casos prácticos que se han desarrollado en la presente tesis. Esta memoria se completa con la lista de las referencias bibliográficas más relevantes que se han consultado para llevar a cabo este trabajo de investigación.
On March 23, 2001 Josep Antoni Martín-Fernández from the Dept. of Computer Sciences and Applied Mathematics of the University of Girona (Catalonia-Spain), presented his PhD thesis, entitled "Measures of difference and non-parametric cluster analysis for compositional data" at the Technical University of Barcelona. A short resumee follows:

Compositional data are by definition proportions of some whole. Thus, their natural sample space is the open simplex and interest lies in the relative behaviour of the components. Basic operations defined on the simplex induce a vector space structure, which justifies the developement of its algebraic-geometric structure: scalar product, norm, and distance. At the same time, hierarchic methods of classification require to establish in advance some or all of the following measures: difference, central tendency and dispersion, in accordance with the nature of the data. J. A. Martín-Fernández studies the requirements for these measures when the data are compositional in type and presents specific measures to be used with the most usual non-parametric methods of cluster analysis. As a part of his thesis he also introduced the centering operation, which has been shown to be a powerful tool to visualize compositional data sets. Furthermore, he defines a new dissimilarity based on measures of divergence between multinomial probability distributions, which is compatible with the nature of compositional data. Finally, J. A. Martín-Fernández presents in his thesis a new method to attack the "Achilles heel" of any statistical analysis of compositional data: the presence of zero values, based on a multiplicative approach which respects the essential properties of this type of data.
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Concepción, Tiza Miguel Angel. "Sistema de gestión y clasificación automática de denuncias ambientales mediante aprendizaje de máquina". Bachelor's thesis, Universidad Peruana de Ciencias Aplicadas (UPC), 2021. http://hdl.handle.net/10757/656797.

Texto completo da fonte
Resumo:
Desde las últimas décadas, el impacto negativo que generan las actividades humanas ha incrementado la importancia de la protección del medio ambiente año tras año tanto en el mundo como en el Perú. Por esta razón, los gobiernos a nivel mundial implementan mecanismos de protección ambiental tales como las denuncias ambientales. Estas permiten a la población informar sobre una posible contaminación ambiental a las autoridades competentes con el fin de que tomen las acciones necesarias, para esto, es necesario que las denuncias sean formuladas, clasificadas y derivadas de forma correcta y oportuna. Sin embargo, para realizar esas tareas de forma correcta se requiere de un amplio conocimiento técnico y legal que pocas personas poseen, esto lleva a que las denuncias ambientales no puedan ser atendidas de forma rápida y eficiente generando malestar en la población afectada. Frente a esta problemática, se propone una solución informática que gestione de forma automática la clasificación y derivación de denuncias ambientales mediante el uso del aprendizaje de máquina. Considerando que la mayoría de las denuncias ambientales consisten en textos se aplica técnicas de procesamiento de lenguaje natural que mediante algoritmos de clasificación de múltiples etiquetas se pueda clasificar automáticamente las denuncias ambientales lo que mejorará los tiempos de atención.
Since the last decades, the negative impact generated by human activities has increased the importance of protecting the environment year after year both in the world and in Peru. For this reason, governments worldwide implement mechanisms for environmental protection such as environmental complaints. These allow the population to report possible environmental contamination to the competent authorities for them to take the necessary actions, for this, it is necessary that the complaints be formulated, classified, and derived in a correct and timely manner. However, to perform these tasks correctly requires extensive technical and legal knowledge that few people possess, this means that environmental complaints cannot be dealt with quickly and efficiently, generating discomfort in the affected population. Faced with this problem, a computer solution is proposed that automatically manages the classification and derivation of environmental complaints using machine learning. Considering that most environmental complaints consists of texts, natural language processing techniques are applied that, using multi-label classification algorithms, environmental complaints can be automatically classified, which will improve service times.
Tesis
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Kachach, Redouane. "Monitorización visual automática de tráfico rodado". Doctoral thesis, Universidad de Alicante, 2016. http://hdl.handle.net/10045/68987.

Texto completo da fonte
Resumo:
La gestión del tráfico es una tarea muy compleja. La información generada por los sistemas tradicionales de monitorización (por ejemplo espirales) es muy limitada e insuficiente para realizar estudios más ambiciosos y complejos sobre el tráfico. Hoy en día esto es un problema en un mundo donde técnicas como el Big Data se han metido en todos los ámbitos. Esta tesis se enfoca en abordar el problema de monitorización automática de vehículos empleando sensores más modernos como las cámaras. Estos sensores llevan ya varias décadas instalados en las carreteras pero con una misión limitada a la monitorización pasiva de las mismas. El objetivo de la tesis es aprovechar estos sensores con algoritmos capaces de extraer información útil de forma automática de las imágenes. Para ello, vamos a abordar dos problemas clásicos en este campo como son el seguimiento y la clasificación automática de vehículos en varias categorías. Dentro del marco de los sistemas inteligentes de transporte (ITS, por sus siglas en inglés), el trabajo presentado en esta tesis aborda los problemas típicos relacionados con el seguimiento de vehículos como la eliminación de sombras y el manejo de oclusiones. Para ello se ha desarrollado un algoritmo que combina criterios de proximidad espacial y temporal con un algoritmo basado en KLT para el seguimiento tratando de aprovechar las ventajas de cada uno de ellos. En el contexto de la clasificación se ha desarrollado un algoritmo híbrido que combina plantillas 3D que representan las distintas categorías de vehículos junto con un clasificador SVM entrenado con características visuales de camiones y autobuses para afinar la clasificación. Todos los algoritmos utilizan una sola cámara como sensor principal. Los sistemas desarrollados han sido probados y validados experimentalmente sobre una amplia base de vídeos tanto propios como otros independientes. Hemos recopilado y etiquetado una amplia colección de vídeos de tráfico representativos de un variado abanico de situaciones que ponemos a disposición de la comunidad científica como banco de pruebas.
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

URDAÑEZ, CARBAJAL Maria Fernanda. "DETECCIÓN AUTOMÁTICA DE GLAUCOMA Y RETINOPATÍA DIABÉTICA USANDO CARACTERÍSTICAS CROMÁTICAS Y TEXTURALES". Tesis de Licenciatura, Universidad Autónoma del Estado de México, 2020. http://hdl.handle.net/20.500.11799/109919.

Texto completo da fonte
Resumo:
La aplicación de los sistemas de visión en diversos campos ha ido creciendo en los últimos años. Los principales retos han sido la mejora del desempeño y disminuir los costos computacionales o complejidad algorítmica. Esta investigación tiene como objetivo analizar las diferentes técnicas de extracción de características de un sistema de visión que permite clasificar el glaucoma y retinopatía diabética a partir de características texturales y cromáticas, de las cuales se utilizaron en este análisis Patrones Binarios Locales, Haralick e Histogramas de Gradientes Ordenados. En los experimentos realizados se utilizaron diferentes clasificadores como: redes neuronales, árboles de decisión, SVM y Naive bayes, realizando la evaluación a partir de técnicas como validación cruzada y área bajo la curva, que nos permitieron tener una comparación del desempeño de los clasificadores así como la representación de la taza de falsos positivos frente a los falsos negativos. Los resultados obtenidos son analizados y comparados en esta tesis, que permitirán también hacer una selección de alguna técnica en base a su complejidad y desempeño.
4996/2020CIB
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Roberto, Rodríguez John Alexander. "Análisis del género discursivo aplicado a la clasificación automática de la polaridad en comentarios sobre productos". Doctoral thesis, Universitat de Barcelona, 2015. http://hdl.handle.net/10803/393892.

Texto completo da fonte
Resumo:
Esta tesis trata sobre el análisis de la polaridad en comentarios sobre productos, más exactamente, sobre la clasificación de comentarios como positivos o negativos a partir del uso de información lingüística. En la tesis presento un enfoque al análisis de la polaridad basado en el género discursivo de los comentarios. Según este enfoque, primero se identifican los segmentos que caracterizan el género discursivo de los comentarios y, posteriormente, se evalúa la utilidad que cada tipo de segmento tiene para determinar la polaridad de los comentarios. La tesis se divide en dos partes. En la primera parte, caracterizo los comentarios como un género mediante el análisis de su estructura discursiva y su registro lingüístico. Sobre la base de ambos análisis postulo que los comentarios se componen de tres tipos principales de segmentos: valorativo, narrativo y descriptivo. En la segunda parte de la tesis, utilizo estos segmentos para calcular la polaridad de los comentarios. La hipótesis de partida es que no todos los segmentos que forman parte del género discursivo de los comentarios contribuyen de la misma manera a expresar la polaridad. Para validar esta hipótesis evalúo tres métodos complementarios que tienen como objetivo detectar y determinar de forma automática la utilidad que tienen los tipos de segmentos para predecir la polaridad de los comentarios. El primer método utiliza información léxica y morfosintáctica para identificar el tipo de segmento que expresa mejor la polaridad del comentario. El segundo método analiza la función que desempeñan las secuencias narrativas en el cálculo de la polaridad. El tercer método se basa en el cálculo de la complejidad sintáctica para identificar y eliminar las oraciones que tienen una polaridad opuesta a la del comentario (oraciones asimétricas) como paso previo a la identificación de los comentarios positivos y negativos. La conclusión principal que se desprende de estos análisis es que existe una relación directa entre el tipo de segmento y la polaridad expresada en el comentario: los usuarios suelen emplear de manera diferente los segmentos según se trate de un comentario positivo o uno negativo. Estas diferencias en el uso de los segmentos me ha llevado a plantear la existencia de dos (sub)géneros discursivos asociados a la expresión de opiniones sobre productos en la Web: el (sub)género de los comentarios positivos y el (sub)género de los comentarios negativos.
This thesis is about polarity analysis of reviews, that is, classifying reviews as either positive or negative based on linguistic evidence. I describe a genre-based approach for the polarity analysis of customer reviews. Genre is characterized by a schematic structure of the discourse composed of different types of stages, each one with a goal-oriented function. This approach to polarity analysis, first, distinguishes stages in the genre of reviews and, subsequently, evaluates the usefulness of each type of stage in the determination of the polarity of the entire review. The thesis is broadly divided into two parts. In the first part, I characterize customer reviews as a discursive genre by analyzing both their structure and their linguistic register. Based on these analysis, I postulate that customer reviews are composed of three main types of stages: valorative, narrative and descriptive. In the second part of the thesis, I determine the usefulness of the different type of stages for the classification of positive and negative reviews. The rationale behind our approach is the assumption that within the specific genre of customer reviews, not all parts of a text contribute equally to expressing the underlying sentiment. In order to validate this hypothesis, I evaluate three alternative methods used to automatically detect and determine the usefulness of each type of stage in the detection of the polarity of the entire review. The first method applies lexical and morphosyntactic information to identify the type of stage that best expresses the polarity of the whole review. The second method analyzes the role played by narrative chains in determining the polarity of reviews. The third method is based on the measurement of syntactic complexity to detect and remove descriptive sentences with the opposite polarity to that of the entire document (asymmetric sentences) as a previous step to identify positive and negative reviews. The main conclusion that has been drawn is that there is a relationship between the types of stages and the polarity expressed in the review: users often employ stages differently according to whether its polarity is positive or negative. These differences in use of stages leads me to the conclusion that there are two (sub)genres, rather than one, for the expression of opinions on the Web: the (sub)genre of positive reviews and the (sub)genre of negative reviews.
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Martínez, España Raquel. "Metodologías basadas en minería de datos para el diseño y optimización de técnicas de clasificación automática". Doctoral thesis, Universidad de Murcia, 2014. http://hdl.handle.net/10803/286364.

Texto completo da fonte
Resumo:
La motivación para el desarrollo de esta tesis doctoral se centra en la problemática de la escasez de técnicas de Análisis Inteligente de Datos que trabajen de forma directa con datos imperfectos. Esto ha estado provocado debido al avance de las nuevas tecnologías las cuales han permitido el almacenamiento de grandes volúmenes de información compuestos de diferentes tipos de datos no siempre tan precisos y perfectos como sería deseable. El objetivo global, y por tanto, los objetivos parciales, se encuentran centrados en el desarrollo de técnicas del Análisis Inteligente de Datos que hagan uso de las metodologías que ofrece el Softcomputing para trabajar con datos imperfectos (datos de baja calidad) de forma directa, sin necesidad de una transformación previa. Específicamente, la tesis se centra en las fases de Preprocesamiento de Datos y de Minería de Datos del Análisis Inteligente de Datos. Por una parte, en la fase de Minería de Datos, se proponen las extensiones de tres técnicas. Concretamente, un árbol de decisión fuzzy, un ensamble de árboles de decisión fuzzy y una técnica basada en vecindad. Para la extensión del árbol de decisión fuzzy y del ensamble se ha definido una medida de similitud para calcular el grado de pertenencia de un valor de baja calidad a cada uno de los descendientes de un nodo N dado. Para la extensión de la técnica basada en vecindad (regla k-NN) se ha definido una serie de medidas distancia para calcular la distancia entre los ejemplos y sus vecinos teniendo presente que estos pueden contener datos de baja calidad. Por otra parte, en la fase de Preprocesamiento se propone el diseño e implementación de un conjunto de técnicas que soporten datos de baja calidad. Concretamente, las técnicas presentadas abarcan los procesos de discretización de atributos numéricos, la selección de atributos, la selección de ejemplos y la imputación de valores missing. En la discretización de atributos se ha diseñado una técnica híbrida compuesta por un árbol de decisión fuzzy y un algoritmo genético. La técnica de selección de atributos propuesta es un algoritmo híbrido compuesto por una técnica de filtrado y una técnica wrapper. Por otro lado la técnica de imputación se basa en el diseño de una nueva regla para la técnica de K-NN y para el proceso de selección de ejemplos se ha utilizado la idea básica de una técnica de condensación de ejemplos, con el fin de seleccionar los más representativos. Además se ha desarrollado una herramienta software que recoge parte de las técnicas de preprocesamiento de datos propuestas y desarrolladas a lo largo de la tesis. El objetivo de esta herramienta software, llamada “NIP imperfection processor” (NIPip), es proporcionar un marco de trabajo común donde los investigadores puedan llevar a cabo un preprocesamiento sobre conjuntos de datos bien para añadirles datos de baja calidad o bien para transformar dicho datos de baja calidad en otros tipos de datos. Como conclusión final debemos comentar que las técnicas propuestas y extendidas, y tras realizar un conjunto de experimentos validados estadísticamente, han mostrado un comportamiento robusto, estable, muy satisfactorio y optimista tanto cuando trabajan con datos de baja calidad como datos crisp. Además la herramienta software propuesta aporta un nuevo marco de trabajo, y una mayor flexibilidad y rapidez a la hora de preprocesar datos tanto de baja calidad como crisp, lo cual es muy importante para el diseño de experimentos a gran escala.
The motivation for the development of this doctoral thesis is focused on the problem of the shortage of techniques of Intelligent Data Analysis, working directly with imperfect data. This has been caused by the advance of new technologies which have allowed the storage of large volumes of information of different types composed of data that are not always as precise and perfect as desired. The global aims, and therefore partial objectives, are focused on the development of techniques of Intelligent Data Analysis making use of methodologies provided by Softcomputing to work directly with imperfect data (low quality), without a need for previous transformation. Specifically, the thesis is focused on the Intelligent Data Analysis phases of data preprocessing and data mining. On the one hand, in the phase of data mining, the extensions of three techniques have been proposed. Specifically, a fuzzy decision tree, an ensemble of fuzzy decision trees and a technique based on neighborhood. For the extension of the fuzzy decision tree and the ensemble techniques a similarity measure has been defined. This measure is used to calculate the membership degree of a low quality value to each of the descendants of a given node N. For the extension of the technique based on neighborhood (k-NN rule) a set of distance measures to calculate the distance between the examples and their neighbors has been defined, bearing in mind that the examples may contain low quality data. On the other hand, the design and implementation of a set of techniques, that support low quality data, is proposed in the preprocessing phase. In particular, the techniques presented include the processes of discretization of numerical attributes, of attribute selection, of example selection and of missing value imputation. In the discretization of attributes, a hybrid technique has been designed. This technique is composed of a fuzzy decision tree and a genetic algorithm. The attribute selection technique proposed consists of a hybrid algorithm composed of a filtering technique and a wrapper technique. In addition, the imputation technique is based on the design of a new rule for the technique K-NN. For the process of example selection, the basic idea of a condensation technique of examples has been used, in order to select the most representative examples. Also, a software tool has been developed. This tool includes part of the data preprocessing techniques proposed and developed in this doctoral thesis. The aim of this software tool, called "NIP imperfection processor" (NIPip) is to provide a common framework where researchers can perform preprocessing on datasets either to add low quality data to them or to transform this low quality data into other types of data. As a final conclusion, it must be emphasized that the proposed and extended techniques, after performing a set of statistically validated experiments, have shown robust, stable, very satisfactory and optimistic behavior both when working with low quality data and when working with crisp data. Also, the software tool proposed provides a new framework, and greater flexibility and speed in the data preprocessing both low quality and crisp, which is very important for the design of large-scale experiments.
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Torres, Rivera Andrés. "Detección y extracción de neologismos semánticos especializados: un acercamiento mediante clasificación automática de documentos y estrategias de aprendizaje profundo". Doctoral thesis, Universitat Pompeu Fabra, 2019. http://hdl.handle.net/10803/667928.

Texto completo da fonte
Resumo:
En el campo de la neología, se han desarrollado diferentes acercamientos metodológicos para la detección y extracción de neologismos semánticos empleando estrategias como la desambiguación semántica y el modelado de temas, pero todavía no existe una propuesta de un sistema para la detección de estas unidades. A partir de un estudio detallado sobre los supuestos teóricos necesarios para delimitar y describir los neologismos semánticos, en esta tesis proponemos el desarrollo de una aplicación para identificar y vaciar dichas unidades mediante estrategias estadísticas, de minería de datos y de aprendizaje automático. La metodología planteada se basa en el tratamiento del proceso de detección y extracción como un problema de clasificación, que consiste en analizar la concordancia de temas entre el campo semántico del significado principal de una palabra y el texto en el que se encuentra. Para constituir la arquitectura del sistema propuesto, analizamos cinco métodos de clasificación automática supervisada y tres modelos para la generación de representaciones vectoriales de palabras mediante aprendizaje profundo. Nuestro corpus de análisis está compuesto por los neologismos semánticos del ámbito de la informática pertenecientes a la base datos del Observatorio de Neologia de la Universitat Pompeu Fabra, que han sido registrados desde 1989 hasta 2015. Utilizamos este corpus para evaluar los distintos métodos que implementa el sistema: clasificación automática, extracción de palabras a partir de contextos cortos y generación de listas de palabras similares. Este primer acercamiento metodológico busca establecer un marco de referencia en materia de detección y extracción de neologismos semánticos.
Dins del camp de la neologia, s’han dissenyat diferents aproximacions metodològics per a la detecció i extracció de neologismes semàntics amb tècniques com la desambiguació semàntica i el modelatge de temes, però encara no existeix cap proposta d’un sistema per a la detecció d’aquestes unitats. A partir d’un estudi detallat sobre els supòsits teòrics necessaris per identificar i descriure els neologismes semàntics, en aquesta tesi proposem el desenvolupament d’una aplicació per identificar i buidar aquestes unitats mitjançant estratègies estadístiques, de mineria de dades i d’aprenentatge automàtic. La metodologia que es planteja es basa en el tractament del procés de detecció i extracció com un problema de classificació, que consisteix a analitzar la concordança de temes entre el camp semàntic del significat principal d’una paraula i el text en què es troba aquesta paraula. Per constituir l’arquitectura del sistema proposat, analitzem cinc mètodes de classificació automàtica supervisada i tres models per a la generació de representacions vectorials de paraules mitjançant aprenentatge profund. El nostre corpus d’anàlisi està format pels neologismes semàntics de l'àmbit de la informàtica pertanyents a la base de dades de l’Observatori de Neologia de la Universitat Pompeu Fabra, que s’han registrat des de 1989 fins a 2015. Utilitzem aquest corpus per avaluar els diferents mètodes que implementa el sistema: classificació automàtica, extracció de paraules a partir de contextos breus i generació de llistes de paraules similars. Aquesta primera aproximació metodològica busca establir un marc de referència en matèria de detecció i extracció de neologismes semàntics.
Dans le domaine de la néologie, différentes approches méthodologiques ont été développées pour la détection et l’extraction de néologismes sémantiques. Ces approches utilisent des stratégies telles que la désambiguïsation sémantique et la modélisation thématique, mais il n’existe aucun système complet de détection de néologismes sémantiques. Avec une étude détaillée des hypothèses théoriques nécessaires pour délimiter et décrire les néologismes sémantiques, nous proposons dans cette thèse le développement d’une application qui permet d’identifier et d’extraire ces unités à travers de méthodes statistiques, d’extraction d’information et d’apprentissage automatique. La méthodologie proposée est basée sur le traitement du processus de détection et d’extraction en tant que problème de classification. Il consiste à analyser la proximité des thèmes entre le champ sémantique de la signification principale d’un terme et son contexte. Pour la construction du système nous avons étudié cinq méthodes de classification automatique supervisée et trois modèles pour la génération de représentations vectorielles de mots par apprentissage profonde. Le corpus d’analyse est composé de néologismes sémantiques du domaine informatique appartenant à la base de données de l’Observatoire de Néologie de l’Université Pompeu Fabra, enregistrés de 1989 à 2015. Nous utilisons ce corpus pour évaluer les différentes méthodes mises en œuvre par le système : classification automatique, extraction de mots à partir de contextes courts et génération de listes de mots similaires. Cette première approche méthodologique cherche à établir un cadre de référence en termes de détection et d’extraction de néologismes sémantiques.
In the field of neology, different methodological approaches for the detection and extraction of semantic neologisms have been developed using strategies such as word sense disambiguation and topic modeling, but there is still not a proposal for a system for the detection of these units. Beginning from a detailed study on the necessary theoretical assumptions required to delimit and describe semantic neologisms, in this thesis, we propose the development of an application to identify and extract said units using statistical, data mining and machine learning strategies. The proposed methodology is based on treating the process of detection and extraction as a classification task, which consists on analyzing the concordance of topics between the semantic field from the main meaning of a word and the text where it is found. To build the architecture of the proposed system, we analyzed five automatic classification methods and three deep learning based word embedding models. Our analysis corpus is composed of the semantic neologisms of the computer science field belonging to the database of the Observatory of Neology of the Pompeu Fabra University, which have been registered from 1989 to 2015. We used this corpus to evaluate the different methods that our system implements: automatic classification, keyword extraction from short contexts, and similarity list generation. This first methodological approach aims to establish a framework of reference in terms of detection and extraction of semantic neologisms.
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Córdova, Pérez Claudia Sofía. "Aplicación de aprendizaje profundo para la detección y clasificación automática de insectos agrícolas en trampas pegantes: una revisión de literatura". Bachelor's thesis, Pontificia Universidad Católica del Perú, 2021. http://hdl.handle.net/20.500.12404/18092.

Texto completo da fonte
Resumo:
El presente trabajo de investigación busca hacer una revisión sistemática sobre las técnicas actuales que se usan para solucionar problemas de identificación y clasificación de plagas de insectos, los cuales pueden ser para detectar uno o más tipos de insectos. Dentro de esta revisión, se encontró soluciones como algoritmos de segmentación con cambio de espacio de color, lo cual permite remover el fondo de una imagen y centrarse únicamente en el objeto de interés; también, el uso de modelos de detección, por ejemplo YOLO y Faster R-CNN, los cuales están conformados por redes neuronales convolucionales para lograr la identificación de insectos plaga; además, se encontraron soluciones que hacían uso de SLIC (Simple Linear Iterative Clustering), así como el uso de un análisis multifractal. Un aspecto relevante a tomar en cuenta para saber qué tan eficientes están siendo estas soluciones son las métricas de evaluación con sus respectivos valores obtenidos; sin embargo, estos resultados solo pueden ser comparables si se usa el mismo dataset para entrenamiento y validación. Por consiguiente y dado que la mayoría de estudios recopilados usa un conjunto de datos propio, los resultados mostrados nos sirven para tener una idea de la eficacia de sus soluciones, mas no para comparar los valores de las métricas de evaluación de los distintos aproximamientos tomados en cada estudio revisado. Finalmente, el único insecto plaga que afecta los campos de hortalizas en el Perú y fue encontrado dentro de los estudios fue la mosca blanca. Los demás estudios abordan el problema de detección con otros tipos de insectos, los cuales no son relevantes para el problema de plagas en Perú, sin embargo, sus soluciones son consideradas pues el cambio que se tendría que hacer es en el conjunto de datos que alimenta a las soluciones presentadas en los estudios encontrados.
Trabajo de investigación
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Hermosilla, Gómez Txomin. "Detección automática de edificios y clasificación de usos del suelo en entornos urbanos con imágenes de alta resolución y datos LiDAR". Doctoral thesis, Universitat Politècnica de València, 2011. http://hdl.handle.net/10251/11232.

Texto completo da fonte
Resumo:
Esta Tesis tiene como objetivo establecer una metodología fiable de detección automática de edificaciones para la clasificación automática de los usos del suelo en entornos urbanos utilizando imágenes aéreas de alta resolución y datos LiDAR. Estos datos se corresponden con la información adquirida en el marco del Plan Nacional de Ortofotografía Aérea (PNOA), y se encuentran a disposición de las administraciones públicas españolas. Para realizar la localización de edificaciones se adaptan y analizan dos técnicas empleando imágenes de alta resolución y datos LiDAR: la primera se basa en el establecimiento de valores umbral en altura y vegetación, y la segunda utiliza una aproximación mediante la clasificación orientada a objetos. La clasificación de los entornos urbanos se ha realizado empleando un enfoque orientado a objetos, definidos a partir de los límites cartográficos de las parcelas catastrales. La descripción cualitativa de los objetos para su posterior clasificación se realiza mediante un conjunto de características descriptivas especialmente diseñadas para la caracterización de entornos urbanos. La información que proporcionan estas características se refiere a la respuesta espectral de cada objeto o parcela, la textura, la altura y sus características geométricas y de forma. Además, se describe el contexto de cada objeto considerando dos niveles: interno y externo. En el nivel interno se extraen características referentes a las coberturas de edificaciones y vegetación contenidas en una parcela. En el nivel externo se calculan características globales de la manzana urbana en la que una parcela esta enmarcada. Se analiza la contribución específica de las características descriptivas en la descripción, así como su aporte en la clasificación de los usos del suelo
Hermosilla Gómez, T. (2011). Detección automática de edificios y clasificación de usos del suelo en entornos urbanos con imágenes de alta resolución y datos LiDAR [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/11232
Palancia
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Vicente, Robledo Javier. "Clinical Decision Support Systems for Brain Tumour Diagnosis: Classification and Evaluation Approaches". Doctoral thesis, Editorial Universitat Politècnica de València, 2012. http://hdl.handle.net/10251/17468.

Texto completo da fonte
Resumo:
A lo largo de las últimas décadas, la disponibilidad cada vez mayor de grandes cantidades de información biomédica ha potenciado el desarrollo de herramientas que permiten extraer e inferir conocimiento. El aumento de tecnologías biomédicas que asisten a los expertos médicos en sus decisiones ha contribuido a la incorporación de un paradigma de medicina basada en la evidencia centrada en el paciente. Las contribuciones de esta Tesis se centran en el desarrollo de herramientas que asisten al médico en su proceso de toma de decisiones en el diagnóstico de tumores cerebrales (TC) mediante Espectros de Resonancia Magnética (ERM). En esta Tesis se contribuye con el desarrollo de clasificadores basados en Reconocimiento de Patrones (RP) entrenados con ERM de pacientes pediátricos y adultos para establecer el tipo y grado del tumor. Estos clasificadores especializados son capaces de aprovechar las diferencias bioquímicas existentes entre los TC infantiles y de adultos. Una de las principales contribuciones de esta Tesis consiste en el desarrollo de modelos de clasificación enfocados a discriminar los tres tipos de tumores cerebrales pediátricos más prevalentes. El cerebelo suele ser una localización habitual de estos tumores, resultando muy difícil distinguir el tipo mediante el uso de Imagen de Resonancia Magnética. Por lo tanto, obtener un alto acierto en la discriminación de astrocitomas pilocíticos, ependimomas y meduloblastomas mediante ERM resulta crucial para establecer una estrategia de cirugía, ya que cada tipo de tumor requiere de unas acciones diferentes si se quiere obtener un buen pronóstico del paciente. Asimismo, esta Tesis contribuye en la extracción de características para ERM mediante el estudio de la combinación de señales de ERM adquiridas en dos tiempos de eco: tiempo de eco corto y tiempo de eco largo; concluyendo que dicha combinación mejora la clasificación de tumores cerebrales pediátricos frente al hecho de usar únicamente los ERM de un
Vicente Robledo, J. (2012). Clinical Decision Support Systems for Brain Tumour Diagnosis: Classification and Evaluation Approaches [Tesis doctoral]. Editorial Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/17468
Palancia
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Rivas, Romero Deglan Jesús. "Diseño conceptual de un sistema automático para clasificación de palta hass". Bachelor's thesis, Pontificia Universidad Católica del Perú, 2020. http://hdl.handle.net/20.500.12404/18521.

Texto completo da fonte
Resumo:
El presente trabajo de investigación tiene por finalidad presentar el diseño conceptual de un sistema automático para la clasificación de paltas tipo Hass por medio de visión artificial. La propuesta surge como consecuencia de las pérdidas que genera la clasificación manual por simple inspección antecedentes en la realidad peruana. Por ello, el objetivo principal de la investigación es diseñar un sistema automático compacto, competitivo laboralmente y rentable con el fin de empoderar a los pequeños y medianos productores. La solución óptima se compone de módulos que se encargan de una tarea desde la alimentación, transporte, disgregación y clasificación de los frutos. El funcionamiento sinérgico de la máquina permite clasificar el producto en 5 calibres distintos regulables según las especificaciones del usuario. Como resultado, se dispone de cálculos teóricos que prueban la efectividad del proceso y su viabilidad económica demostrando así la posibilidad de diseñar un sistema clasificador de paltas que opera por medio de métodos no invasivos disponibles en el mercado.
Trabajo de investigación
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Oliver, i. Malagelada Arnau. "Automatic mass segmentation in mammographic images". Doctoral thesis, Universitat de Girona, 2007. http://hdl.handle.net/10803/7739.

Texto completo da fonte
Resumo:
Aquesta tesi està emmarcada dins la detecció precoç de masses, un dels símptomes més clars del càncer de mama, en imatges mamogràfiques. Primerament, s'ha fet un anàlisi extensiu dels diferents mètodes de la literatura, concloent que aquests mètodes són dependents de diferent paràmetres: el tamany i la forma de la massa i la densitat de la mama. Així, l'objectiu de la tesi és analitzar, dissenyar i implementar un mètode de detecció robust i independent d'aquests tres paràmetres. Per a tal fi, s'ha construït un patró deformable de la massa a partir de l'anàlisi de masses reals i, a continuació, aquest model és buscat en les imatges seguint un esquema probabilístic, obtenint una sèrie de regions sospitoses. Fent servir l'anàlisi 2DPCA, s'ha construït un algorisme capaç de discernir aquestes regions són realment una massa o no. La densitat de la mama és un paràmetre que s'introdueix de forma natural dins l'algorisme.
This thesis deals with the detection of masses in mammographic images. As a first step, Regions of Interests (ROIs) are detected in the image using templates containing a probabilistic contour shape obtained from training over an annotated set of masses. Firstly, PCA is performed over the training set, and subsequently the template is formed as an average of the gradient of eigenmasses weighted by the top eigenvalues. The template can be deformed according to each eigenmass coefficient. The matching is formulated in a Bayesian framework, where the prior penalizes the deformation, and the likelihood requires template boundaries to agree with image edges. In the second stage, the detected ROIs are classified into being false positives or true positives using 2DPCA, where the new training set now contains ROIs with masses and ROIs with normal tissue. Mass density is incorporated into the whole process by initially classifying the two training sets according to breast density. Methods for breast density estimation are also analyzed and proposed. The results are obtained using different databases and both FROC and ROC analysis demonstrate a better performance of the approach relative to competing methods.
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Silva, Palacios Daniel Andrés. "Clasificación Jerárquica Multiclase". Doctoral thesis, Universitat Politècnica de València, 2021. http://hdl.handle.net/10251/167015.

Texto completo da fonte
Resumo:
[ES] La sociedad moderna se ha visto afectada por los acelerados avances de la tecnología. La aplicación de la inteligencia artificial se puede encontrar en todas partes, desde la televisión inteligente hasta los coches autónomos. Una tarea esencial del aprendizaje automático es la clasificación. A pesar de la cantidad de técnicas y algoritmos de clasificación que existen, es un campo que sigue siendo relevante por todas sus aplicaciones. Así, frente a la clasificación tradicional multiclase en la que a cada instancia se le asigna una única etiqueta de clase, se han propuesto otros métodos como la clasificación jerárquica y la clasificación multietiqueta. Esta tesis tiene como objetivo resolver la clasificación multiclase mediante una descomposición jerárquica. Asimismo, se exploran diferentes métodos de extender la aproximación definida para su aplicación en contextos cambiantes. La clasificación jerárquica es una tarea de aprendizaje automático en la que el problema de clasificación original se divide en pequeños subproblemas. Esta división se realiza teniendo en cuenta una estructura jerárquica que representa las relaciones entre las clases objetivo. Como resultado el clasificador jerárquico es a su vez una estructura (un árbol o un grafo) compuesta por clasificadores de base. Hasta ahora, en la literatura, la clasificación jerárquica se ha aplicado a dominios jerárquicos, independientemente que la estructura jerárquica sea proporcionada explícitamente o se asume implícita (en cuyo caso se hace necesario inferir primero dicha estructura jerárquica). La clasificación jerárquica ha demostrado un mejor rendimiento en dominios jerárquicos en comparación con la clasificación plana (que no tiene en cuenta la estructura jerárquica del dominio). En esta tesis, proponemos resolver los problemas de clasificación multiclase descomponiéndolo jerárquicamente de acuerdo a una jerarquía de clases inferida por un clasificador plano. Planteamos dos escenarios dependiendo del tipo de clasificador usado en la jerarquía de clasificadores: clasificadores duros (crisp) y clasificadores suaves (soft). Por otra parte, un problema de clasificación puede sufrir cambios una vez los modelos han sido entrenados. Un cambio frecuente es la aparición de una nueva clase objetivo. Dado que los clasificadores no han sido entrenados con datos pertenecientes a la nueva clase, no podrán encontrar predicciones correctas para las nuevas instancias, lo que afectará negativamente en el rendimiento de los clasificadores. Este problema se puede resolver mediante dos alternativas: el reentrenamiento de todo el modelo o la adaptación del modelo para responder a esta nueva situación. Como parte del estudio de los algoritmos de clasificación jerárquica se presentan varios métodos para adaptar el modelo a los cambios en las clases objetivo. Los métodos y aproximaciones definidas en la tesis se han evaluado experimentalmente con una amplia colección de conjuntos de datos que presentan diferentes características, usando diferentes técnicas de aprendizaje para generar los clasificadores de base. En general, los resultados muestran que los métodos propuestos pueden ser una alternativa a métodos tradicionales y otras técnicas presentadas en la literatura para abordar las situaciones específicas planteadas.
[CA] La societat moderna s'ha vist afectada pels accelerats avenços de la tecnologia. L'aplicació de la intel·ligència artificial es pot trobar a tot arreu, des de la televisió intel·ligent fins als cotxes autònoms. Una tasca essencial de l'aprenentatge automàtic és la classificació. Tot i la quantitat de tècniques i algoritmes de classificació que existeixen, és un camp que segueix sent rellevant per totes les seves aplicacions. Així, enfront de la classificació tradicional multiclase en la qual a cada instància se li assigna una única etiqueta de classe, s'han proposat altres mètodes com la classificació jeràrquica i la classificació multietiqueta. Aquesta tesi té com a objectiu resoldre la classificació multiclase mitjançant una descomposició jeràrquica. Així mateix, s'exploren diferents mètodes d'estendre l'aproximació definida per a la seva aplicació en contextos canviants. La classificació jeràrquica és una tasca d'aprenentatge automàtic en la qual el problema de classificació original es divideix en petits subproblemes. Aquesta divisió es realitza tenint en compte una estructura jeràrquica que representa les relacions entre les classes objectiu. Com a resultat el classificador jeràrquic és al seu torn una estructura (un arbre o un graf) composta per classificadors de base. Fins ara, en la literatura, la classificació jeràrquica s'ha aplicat a dominis jeràrquics, independentment que l'estructura jeràrquica sigui proporcionada explícitament o s'assumeix implícita (en aquest cas es fa necessari inferir primer aquesta estructura jeràrquica). La classificació jeràrquica ha demostrat un millor rendiment en dominis jeràrquics en comparació amb la classificació plana (que no té en compte l'estructura jeràrquica de l'domini). En aquesta tesi, proposem resoldre els problemes de classificació multiclasse descomponent jeràrquicament d'acord a una jerarquia de classes inferida per un classificador pla. Plantegem dos escenaris depenent de el tipus de classificador usat en la jerarquia de classificadors: classificadors durs (crisp) i classificadors suaus (soft). D'altra banda, un problema de classificació pot patir canvis una vegada els models han estat entrenats. Un canvi freqüent és l'aparició d'una nova classe objectiu. Atès que els classificadors no han estat entrenats amb dades pertanyents a la nova classe, no podran trobar prediccions correctes per a les noves instàncies, el que afectarà negativament en el rendiment dels classificadors. Aquest problema es pot resoldre mitjançant dues alternatives: el reentrenament de tot el model o l'adaptació de el model per respondre a aquesta nova situació. Com a part de l'estudi dels algoritmes de classificació jeràrquica es presenten diversos mètodes per adaptar el model als canvis en les classes objectiu. Els mètodes i aproximacions definides en la tesi s'han avaluat experimentalment amb una àmplia col·lecció de conjunts de dades que presenten diferents característiques, usant diferents tècniques d'aprenentatge per generar els classificadors de base. En general, els resultats mostren que els mètodes proposats poden ser una alternativa a mètodes tradicionals i altres tècniques presentades en la literatura per abordar les situacions específiques plantejades.
[EN] The modern society has been affected by rapid advances in technology. The application of artificial intelligence can be found everywhere, from intelligent television to autonomous cars. An essential task of machine learning is classification. Despite the number of classification techniques and algorithms that exist, it is a field that remains relevant for all its applications. Thus, as opposed to the traditional multiclass classification in which each instance is assigned a single class label, other methods such as hierarchical classification and multi-label classification have been proposed. This thesis aims to solve multiclass classification by means of a hierarchical decomposition. Also, different methods of extending the defined approach are explored for application in changing contexts. Hierarchical classification is an automatic learning task in which the original classification problem is divided into small sub-problems. This division is made taking into account a hierarchical structure that represents the relationships between the target classes. As a result the hierarchical classifier is itself a structure (a tree or a graph) composed of base classifiers. Up to now, in the literature, hierarchical classification has been applied to hierarchical domains, regardless of whether the hierarchical structure is explicitly provided or assumed to be implicit (in which case it becomes necessary to first infer the hierarchical structure). Hierarchical classification has demonstrated better performance in hierarchical domains compared to flat classification (which does not take into account the hierarchical structure of the domain). In this thesis, we propose to solve the problems of multiclass classification by breaking it down hierarchically according to a class hierarchy inferred by a plane classifier. We propose two scenarios depending on the type of classifier used in the classifier hierarchy: hard classifiers (crisp) and soft classifiers (soft). On the other hand, a classification problem may change once the models have been trained. A frequent change is the appearance of a new target class. Since the existing classifiers have not been trained with data belonging to the new class, they will not be able to find correct predictions for the new instances, which will negatively affect the performance of the classifiers. This problem can be solved by two alternatives: retraining the entire model or adapting the model to respond to this new situation. As part of the study of hierarchical classification algorithms, several methods are presented to adapt the model to changes in target classes. The methods and approaches defined in the thesis have been evaluated experimentally with a large collection of data sets that have different characteristics, using different learning techniques to generate the base classifiers. In general, the results show that the proposed methods can be an alternative to traditional methods and other techniques presented in the literature to address the specific situations raised.
Silva Palacios, DA. (2021). Clasificación Jerárquica Multiclase [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/167015
TESIS
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Tomás, David. "Sistemas de clasificación de preguntas basados en corpus para la búsqueda de respuestas". Doctoral thesis, Universidad de Alicante, 2009. http://hdl.handle.net/10045/13880.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Ruiz, Rico Fernando. "Selección y ponderación de características para la clasificación de textos y su aplicación en el diagnóstico médico". Doctoral thesis, Universidad de Alicante, 2013. http://hdl.handle.net/10045/36215.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Tenorio, Ku Luiggi Gianpiere. "Exploración de métodos de clasificación de proteínas repetidas basado en su información estructural utilizando aprendizaje de máquina". Bachelor's thesis, Pontificia Universidad Católica del Perú, 2020. http://hdl.handle.net/20.500.12404/16991.

Texto completo da fonte
Resumo:
En la actualidad, existen métodos complejos para la clasificación e identificación de proteínas repetidas a partir de su estructura, los cuales implican un uso intenso y costoso de recursos computacionales. Debido a ello, en el presente trabajo de investigación se busca explorar soluciones alternativas y complementarias a otros sistemas en la etapa de clasificación de proteínas repetidas con técnicas del área de estudio de aprendizaje de máquina. Estas técnicas son conocidas por ser efectivas y rápidas para la sistematización de varios procedimientos de clasificación, segmentación y transformación de datos con la condición de que se disponga de una cantidad considerable de datos. De esa forma, en consecuencia de la cantidad de datos estructurales que se han generado en los últimos años en el ambito de las proteínas y las proteínas repetidas, es posible utilizar técnicas de aprendizaje de máquina para la clasificación de las mismas. Por ello, en este trabajo, a partir de un análisis a los datos que se poseen en la actualidad y una revisión sistemática de la literatura, se proponen posibles soluciones que utilizan aprendizaje de máquina para la clasificación automatizada y rápida de proteínas repetidas a partir de su estructura. De estas posibles soluciones, se concluye que es posible la implementación de un clasificador con múltiples entradas utilizando información de los ángulos de torsión y distancia entre aminoácidos de una proteína, la cual va a ser implementada y evaluada en un trabajo futuro.
Trabajo de investigación
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Romeo, Lauren Michele. "The Structure of the lexicon in the task of the automatic acquisition of lexical information". Doctoral thesis, Universitat Pompeu Fabra, 2015. http://hdl.handle.net/10803/325420.

Texto completo da fonte
Resumo:
La información de clase semántica de los nombres es fundamental para una amplia variedad de tareas del procesamiento del lenguaje natural (PLN), como la traducción automática, la discriminación de referentes en tareas como la detección y el seguimiento de eventos, la búsqueda de respuestas, el reconocimiento y la clasificación de nombres de entidades, la construcción y ampliación automática de ontologías, la inferencia textual, etc. Una aproximación para resolver la construcción y el mantenimiento de los léxicos de gran cobertura que alimentan los sistemas de PNL, una tarea muy costosa y lenta, es la adquisición automática de información léxica, que consiste en la inducción de una clase semántica relacionada con una palabra en concreto a partir de datos de su distribución obtenidos de un corpus. Precisamente, por esta razón, se espera que la investigación actual sobre los métodos para la producción automática de léxicos de alta calidad, con gran cantidad de información y con anotación de clase como el trabajo que aquí presentamos, tenga un gran impacto en el rendimiento de la mayoría de las aplicaciones de PNL. En esta tesis, tratamos la adquisición automática de información léxica como un problema de clasificación. Con este propósito, adoptamos métodos de aprendizaje automático para generar un modelo que represente los datos de distribución vectorial que, basados en ejemplos conocidos, permitan hacer predicciones de otras palabras desconocidas. Las principales preguntas de investigación que planteamos en esta tesis son: (i) si los datos de corpus proporcionan suficiente información para construir representaciones de palabras de forma eficiente y que resulten en decisiones de clasificación precisas y sólidas, y (ii) si la adquisición automática puede gestionar, también, los nombres polisémicos. Para hacer frente a estos problemas, realizamos una serie de validaciones empíricas sobre nombres en inglés. Nuestros resultados confirman que la información obtenida a partir de la distribución de los datos de corpus es suficiente para adquirir automáticamente clases semánticas, como lo demuestra un valor-F global promedio de 0,80 aproximadamente utilizando varios modelos de recuento de contextos y en datos de corpus de distintos tamaños. No obstante, tanto el estado de la cuestión como los experimentos que realizamos destacaron una serie de retos para este tipo de modelos, que son reducir la escasez de datos del vector y dar cuenta de la polisemia nominal en las representaciones distribucionales de las palabras. En este contexto, los modelos de word embedding (WE) mantienen la “semántica” subyacente en las ocurrencias de un nombre en los datos de corpus asignándole un vector. Con esta elección, hemos sido capaces de superar el problema de la escasez de datos, como lo demuestra un valor-F general promedio de 0,91 para las clases semánticas de nombres de sentido único, a través de una combinación de la reducción de la dimensionalidad y de números reales. Además, las representaciones de WE obtuvieron un rendimiento superior en la gestión de las ocurrencias asimétricas de cada sentido de los nombres de tipo complejo polisémicos regulares en datos de corpus. Como resultado, hemos podido clasificar directamente esos nombres en su propia clase semántica con un valor-F global promedio de 0,85. La principal aportación de esta tesis consiste en una validación empírica de diferentes representaciones de distribución utilizadas para la clasificación semántica de nombres junto con una posterior expansión del trabajo anterior, lo que se traduce en recursos léxicos y conjuntos de datos innovadores que están disponibles de forma gratuita para su descarga y uso.
La información de clase semántica de los nombres es fundamental para una amplia variedad de tareas del procesamiento del lenguaje natural (PLN), como la traducción automática, la discriminación de referentes en tareas como la detección y el seguimiento de eventos, la búsqueda de respuestas, el reconocimiento y la clasificación de nombres de entidades, la construcción y ampliación automática de ontologías, la inferencia textual, etc. Una aproximación para resolver la construcción y el mantenimiento de los léxicos de gran cobertura que alimentan los sistemas de PNL, una tarea muy costosa y lenta, es la adquisición automática de información léxica, que consiste en la inducción de una clase semántica relacionada con una palabra en concreto a partir de datos de su distribución obtenidos de un corpus. Precisamente, por esta razón, se espera que la investigación actual sobre los métodos para la producción automática de léxicos de alta calidad, con gran cantidad de información y con anotación de clase como el trabajo que aquí presentamos, tenga un gran impacto en el rendimiento de la mayoría de las aplicaciones de PNL. En esta tesis, tratamos la adquisición automática de información léxica como un problema de clasificación. Con este propósito, adoptamos métodos de aprendizaje automático para generar un modelo que represente los datos de distribución vectorial que, basados en ejemplos conocidos, permitan hacer predicciones de otras palabras desconocidas. Las principales preguntas de investigación que planteamos en esta tesis son: (i) si los datos de corpus proporcionan suficiente información para construir representaciones de palabras de forma eficiente y que resulten en decisiones de clasificación precisas y sólidas, y (ii) si la adquisición automática puede gestionar, también, los nombres polisémicos. Para hacer frente a estos problemas, realizamos una serie de validaciones empíricas sobre nombres en inglés. Nuestros resultados confirman que la información obtenida a partir de la distribución de los datos de corpus es suficiente para adquirir automáticamente clases semánticas, como lo demuestra un valor-F global promedio de 0,80 aproximadamente utilizando varios modelos de recuento de contextos y en datos de corpus de distintos tamaños. No obstante, tanto el estado de la cuestión como los experimentos que realizamos destacaron una serie de retos para este tipo de modelos, que son reducir la escasez de datos del vector y dar cuenta de la polisemia nominal en las representaciones distribucionales de las palabras. En este contexto, los modelos de word embedding (WE) mantienen la “semántica” subyacente en las ocurrencias de un nombre en los datos de corpus asignándole un vector. Con esta elección, hemos sido capaces de superar el problema de la escasez de datos, como lo demuestra un valor-F general promedio de 0,91 para las clases semánticas de nombres de sentido único, a través de una combinación de la reducción de la dimensionalidad y de números reales. Además, las representaciones de WE obtuvieron un rendimiento superior en la gestión de las ocurrencias asimétricas de cada sentido de los nombres de tipo complejo polisémicos regulares en datos de corpus. Como resultado, hemos podido clasificar directamente esos nombres en su propia clase semántica con un valor-F global promedio de 0,85. La principal aportación de esta tesis consiste en una validación empírica de diferentes representaciones de distribución utilizadas para la clasificación semántica de nombres junto con una posterior expansión del trabajo anterior, lo que se traduce en recursos léxicos y conjuntos de datos innovadores que están disponibles de forma gratuita para su descarga y uso.
Lexical semantic class information for nouns is critical for a broad variety of Natural Language Processing (NLP) tasks including, but not limited to, machine translation, discrimination of referents in tasks such as event detection and tracking, question answering, named entity recognition and classification, automatic construction and extension of ontologies, textual inference, etc. One approach to solve the costly and time-consuming manual construction and maintenance of large-coverage lexica to feed NLP systems is the Automatic Acquisition of Lexical Information, which involves the induction of a semantic class related to a particular word from distributional data gathered within a corpus. This is precisely why current research on methods for the automatic production of high- quality information-rich class-annotated lexica, such as the work presented here, is expected to have a high impact on the performance of most NLP applications. In this thesis, we address the automatic acquisition of lexical information as a classification problem. For this reason, we adopt machine learning methods to generate a model representing vectorial distributional data which, grounded on known examples, allows for the predictions of other unknown words. The main research questions we investigate in this thesis are: (i) whether corpus data provides sufficient distributional information to build efficient word representations that result in accurate and robust classification decisions and (ii) whether automatic acquisition can handle also polysemous nouns. To tackle these problems, we conducted a number of empirical validations on English nouns. Our results confirmed that the distributional information obtained from corpus data is indeed sufficient to automatically acquire lexical semantic classes, demonstrated by an average overall F1-Score of almost 0.80 using diverse count-context models and on different sized corpus data. Nonetheless, both the State of the Art and the experiments we conducted highlighted a number of challenges of this type of model such as reducing vector sparsity and accounting for nominal polysemy in distributional word representations. In this context, Word Embeddings (WE) models maintain the “semantics” underlying the occurrences of a noun in corpus data by mapping it to a feature vector. With this choice, we were able to overcome the sparse data problem, demonstrated by an average overall F1-Score of 0.91 for single-sense lexical semantic noun classes, through a combination of reduced dimensionality and “real” numbers. In addition, the WE representations obtained a higher performance in handling the asymmetrical occurrences of each sense of regular polysemous complex-type nouns in corpus data. As a result, we were able to directly classify such nouns into their own lexical-semantic class with an average overall F1-Score of 0.85. The main contribution of this dissertation consists of an empirical validation of different distributional representations used for nominal lexical semantic classification along with a subsequent expansion of previous work, which results in novel lexical resources and data sets that have been made freely available for download and use.
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Portocarrero, Rodríguez César Augusto. "Clasificación del territorio peruano de acuerdo con su potencial de agua subterránea utilizando algoritmos de aprendizaje automatizado". Bachelor's thesis, Pontificia Universidad Católica del Perú, 2020. http://hdl.handle.net/20.500.12404/17705.

Texto completo da fonte
Resumo:
El agravamiento del estrés hídrico tanto en el sector urbano como en el rural motiva cada vez más a los tomadores de decisión a impulsar la explotación sostenible de este recurso. Para ello, se requiere conocer con certeza los emplazamientos con un mayor potencial de explotación. Para hacer frente a este problema sin recurrir a perforaciones directas, la presente investigación tiene como objetivo principal explorar el potencial hidrológico subterráneo del Perú correspondiente a acuíferos de baja profundidad mediante la aplicación de modelos de clasificación de bosques aleatorios y redes neuronales, dos algoritmos de aprendizaje automatizado. Esta rama de la inteligencia artificial permite generar modelos multidimensionales y con variables complejas sin efectuar presuposiciones estadísticas. Para explicar el potencial de agua subterránea, se recurren a variables topográficas, hidrológicas, geológicas, pedológicas y ambientales que influyen en diferente medida en la conductividad hidráulica subterránea y en la tasa de recarga de los acuíferos. Los resultados obtenidos indican que el mejor desempeño equiparable al estado del arte se obtiene para el modelo de bosques aleatorios (exactitud=0.77, puntaje F1=0.73, AUC=0.88) y que la construcción de modelos especializados en una región dada permite mejorar la capacidad de los modelos al reducir la varianza de los datos. Las variables más importantes en los modelos fueron: aspecto, densidad de drenaje, elevación, NDWI y precipitación. La principal limitación identificada en el desempeño de los modelos es la escasa cantidad y distribución irregular de los pozos de caudal conocido en el Perú, factor que parcializa el modelo hacia la costa, la región mejor documentada. El presente estudio sirve como marco referencial para la construcción de futuros modelos de aprendizaje automatizado una vez se amplíe el inventario público de pozos de agua subterránea o en caso privados introduzcan su propio inventario. El código empleado para el procesamiento de variables geoespaciales se encuentra en https://code.earthengine.google.com/fe63cd6184b009824ed3c843fdc5544d. El código utilizado para la construcción de modelos se encuentra registrado en Github en https://github.com/cesport/Tesis. Aplicaciones para visualizar los resultados de manera interactiva están disponibles para computadoras en https://cesarportocarrero.users.earthengine.app/view/gwp-peru y dispositivos móviles en https://cesarportocarrero.users.earthengine.app/view/gwp-peru-movil.
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Molina, Gómez Nidia Isabel. "Incidencia de la calidad el aire en el desarrollo urbano sostenible. Metodología de pronóstico basado en herramientas de aprendizaje automático". Doctoral thesis, Universitat Politècnica de València, 2021. http://hdl.handle.net/10251/168398.

Texto completo da fonte
Resumo:
[ES] La calidad del aire es un determinante de la salud y bienestar de las poblaciones; su mejora es parte de algunas metas de los objetivos de desarrollo sostenible (ODS) con la Agenda 2030. Al respecto, se han definido a nivel mundial protocolos, acuerdos, convenios y lineamientos de política para lograr avanzar en el cumplimiento de los ODS. Existen además reportes nacionales de avance en la implementación de metas específicas, según la agenda de cada país y en algunos casos en el ámbito de ciudad, cuyos indicadores pueden integrarse en las dimensiones más conocidas del desarrollo sostenible: la dimensión ambiental, la social y la económica. Existe información sobre el monitoreo del estado de la calidad de los recursos y de condiciones del territorio en diversos temas. Sin embargo, no en todos los territorios, en sus diferentes escalas espaciales, se realiza una continua evaluación de su desempeño sostenible y, además factores de deterioro ambiental como la contaminación del aire, son tratados como determinantes aislados con la generación de reportes de su comportamiento y el desarrollo de planes de monitoreo y de mitigación. Del mismo modo, para los diferentes temas que hacen parte de las dimensiones de la sostenibilidad, existen herramientas de modelación para evaluar el comportamiento de sus indicadores; sin embargo, no se cuenta con un instrumento que pronostique el nivel de avance en el desarrollo sostenible y además que identifique la influencia de la calidad del aire en su comportamiento. Las herramientas de aprendizaje automático pueden aportar en la respuesta a dicha situación, al ser instrumentos útiles en el pronóstico del comportamiento de un conjunto de datos. Por consiguiente, el objetivo central de este trabajo doctoral es establecer la incidencia de la calidad del aire sobre el desarrollo urbano sostenible, en sus dimensiones ambiental, social y económica, mediante el uso de herramientas de aprendizaje automático, como soporte para la toma de decisiones. Este objetivo involucra el diseño y ejecución de una metodología para identificar la influencia de indicadores en materia de calidad del aire, sobre el desarrollo urbano sostenible. Este trabajo doctoral se desarrolló como compendio de un conjunto de publicaciones que incluyen 1) la revisión del estado del arte para la identificación de las variables y parámetros que podrían calificar las dimensiones individuales del desempeño sostenible, 2) la evaluación del nivel de avance en el desarrollo sostenible de una zona urbana y el análisis estadístico de su desempeño sostenible según las variables analizadas; 3) la identificación, selección y aplicación de las herramientas de aprendizaje automático y por último 4) la identificación del grado de influencia de la calidad del aire en el pronóstico del nivel de sostenibilidad establecido. Para ello se hizo uso del software ArcGIS para el análisis espacial y del software de acceso libre R para los análisis estadísticos y la aplicación de las herramientas de aprendizaje automático. Esta investigación se realizó a partir de un estudio de caso en una localidad de la ciudad de Bogotá, en Colombia que es la capital del país, situada sobre una planicie altitudinal en la cordillera oriental y a 2625 metros sobre el nivel del mar. Bogotá es una de las ciudades más pobladas en América Latina y es una de las capitales mundiales que ha presentado altos niveles de contaminación por material particulado, siendo éste un factor de riesgo para su población. La metodología construida permite evaluar la influencia de la calidad del aire en el desarrollo urbano sostenible mediante herramientas de aprendizaje automático. Es aplicable a zonas urbanas y orienta el paso a paso para la determinación de los factores de mayor relevancia en cada una de las dimensiones de la sostenibilidad, constituyéndose en un instrumento de soporte para la toma de decisiones respecto a la implem
[CA] La qualitat de l'aire és un determinant de la salut i benestar de les poblacions; la seua millora és part d'algunes metes dels objectius de desenvolupament sostenible (ODS) amb l'Agenda 2030. Sobre aquest tema, s'han definit a nivell mundial protocols, acords, convenis i alineaments de política per a aconseguir avançar en el compliment dels ODS. Existeixen reportes nacionals d'avanç sobre la implementació de metes específiques, segons l'agenda de cada país i en alguns casos en l'àmbit de ciutat, els indicadors de la qual poden integrar-se en les dimensions més conegudes del desenvolupament sostenible: la dimensió ambiental, la social i l'econòmica. Existeix informació sobre el monitoratge de l'estat de la qualitat dels recursos i de les condicions del territori en diversos temes. No obstant això, no en tots els territoris, en les seues diferents escales espacials, es realitza contínua avaluació del seu acompliment sostenible i, a més a més, factors de deterioració ambiental com la contaminació de l'aire, són tractats com a determinants aïllats amb la generació de reportes del seu comportament i el desenvolupament de plans de monitoratge i de mitigació. De la mateixa manera, per als diferents temes que fan part de les dimensions de la sostenibilitat, existeixen eines de modelatge per a avaluar el comportament dels seus indicadors; no obstant això, no es compta amb un instrument que pronostique el nivell d'avanç en el desenvolupament sostenible i a més que identifique la influència de la qualitat de l'aire en el seu comportament. Les eines d'aprenentatge automàtic poden aportar en la resposta a aquesta situació, en ser instruments útils en el pronòstic del comportament d'un conjunt de dades. Per consegüent, l'objectiu central d'aquest treball doctoral és establir la incidència de la qualitat de l'aire sobre el desenvolupament urbà sostenible, en les seues dimensions ambiental, social i econòmica, mitjançant l'ús d'eines d'aprenentatge automàtic, com a suport per a la presa de decisions. Aquest objectiu involucra el disseny i execució d'una metodologia per a identificar la influència d'indicadors en matèria de qualitat de l'aire, sobre el desenvolupament urbà sostenible. Aquest treball doctoral es va desenvolupar com a compendi d'un conjunt de publicacions que inclouen 1) la revisió de l'estat de l'art per a la identificació de les variables i paràmetres que podrien qualificar les dimensions individuals de l'acompliment sostenible, 2) l'avaluació del nivell d'avanç en el desenvolupament sostenible d'una zona urbana i l'anàlisi estadística del seu acompliment sostenible segons les variables analitzades; 3) la identificació, selecció i aplicació de les eines d'aprenentatge automàtic i finalment 4) la identificació del grau d'influència de la qualitat de l'aire en el pronòstic del nivell de sostenibilitat establit. Per a això es va fer ús del programari ArcGIS per a l'anàlisi espacial i del programari d'accés lliure R per a les anàlisis estadístiques i l'aplicació de les eines d'aprenentatge automàtic. Aquesta investigació es va realitzar a partir d'un estudi de cas en una localitat de la ciutat de Bogotà, a Colòmbia que és la capital del país, situada sobre una planícia altitudinal en la serralada oriental i a 2625 metres sobre el nivell de la mar. Bogotà és una de les ciutats més poblades a Amèrica Llatina i és una de les capitals mundials que ha presentat alts nivells de contaminació per material particulat, sent aquest un factor de risc per a la seua població. La metodologia construïda permet avaluar la influència de la qualitat de l'aire en el desenvolupament urbà sostenible mitjançant l'ús d'eines d'aprenentatge automàtic. És aplicable a zones urbanes i orienta el pas a pas per a la determinació dels factors de major rellevància en cadascuna de les dimensions de la sostenibilitat, constituint-se en un instrument de suport per a la presa d
[EN] Air quality is a determinant to the health and well-being of populations; its improvement is part of some of the targets of the Sustainable Development Goals (SDGs) with the 2030 Agenda. In this regard, protocols, agreements, pacts, and policy guidelines have been defined worldwide to progress in the SDGs' achievement. Additionally, there are national progress reports on reaching specific goals, based on each country's agenda. In certain cases, these include city-level reports, whose indicators, both at the national and city levels, can be integrated into the central and best-known dimensions of sustainable development, namely the environmental, social, and economic dimensions. There is information concerning the monitoring of the state of resource quality and territorial conditions in various areas. However, not all territories in their different spatial scales are continuously evaluated for their sustainable performance. Moreover, environmental deterioration factors such as air pollution are handled as isolated determinants with reports generated on their behavior, in addition to developing monitoring and mitigation plans. Likewise, there are modeling tools to evaluate the behavior of different components that are part of the dimensions of sustainability. However, there is no instrument that forecasts the level of progress in sustainable development that also identifies the influence of air quality on its behavior. Machine learning tools can contribute to responding to this situation, as they are able to predict the behavior of a data set. Therefore, the primary objective of this doctoral work is to establish the incidence of air quality on urban sustainable development, in its environmental, social, and economic dimensions, through the use of machine learning tools to support decision-making. This objective entails designing and implementing a methodology to identify the influence of air quality indicators on urban sustainable development. This doctoral thesis was developed as a compendium of a set of publications which include: 1) the review of the state of the art for identifying variables and parameters that could qualify the individual dimensions of sustainable performance; 2) the evaluation of the level of progress of the sustainable development of an urban area, and the statistical analysis of its sustainable performance based on the variables analyzed; 3) the identification, selection, and use of machine learning tools, and lastly 4) the identification of the influence of air quality on the prediction of the established sustainability level. The ArcGIS program was used for the spatial analysis, and the free-access software R for the statistical analysis, and the use of the machine learning tools. This research was performed based on a case study of a locality in the capital of Colombia; Bogotá, which is located on an altitudinal plain in the eastern mountain range at 2625 meters above sea level. Bogotá is one of the most populated cities in Latin America and is one of the world capitals with the highest levels of air pollution from particulate matter, which is a risk factor for its population. The methodology developed enables evaluating the influence of air quality on urban sustainable development with machine learning tools. This methodology is valid in urban areas, and through a step-by-step approach, determines the most relevant factors for each sustainability dimension. It has become a tool to support decision-making regarding the implementation and progress of the SDGs from the micro-territory level.
Molina Gómez, NI. (2021). Incidencia de la calidad el aire en el desarrollo urbano sostenible. Metodología de pronóstico basado en herramientas de aprendizaje automático [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/168398
TESIS
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Hernández, Álvarez Myriam. "Concit-Corpus: Context Citation Analysis to learn Function, Polarity and Influence". Doctoral thesis, Universidad de Alicante, 2015. http://hdl.handle.net/10045/50506.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Gibert, Llauradó Daniel. "Going Deep into the Cat and the Mouse Game: Deep Learning for Malware Classification". Doctoral thesis, Universitat de Lleida, 2020. http://hdl.handle.net/10803/671776.

Texto completo da fonte
Resumo:
La lluita contra el programari maliciós no s'ha interromput mai des dels inicis de l'era digital, esdevenint una carrera armamentística cíclica i interminable; a mesura que els analistes en seguretat i investigadors milloren les seves defenses, els desenvolupadors de programari maliciós continuen innovant, trobant nous vectors d'infecció i millorant les tècniques d'ofuscació. Recentment, degut al creixement massiu i continu del programari maliciós, es requereixen nous mètodes per a complementar els existents i així poder protegir satisfactòriament els sistemes de nous atacs i variants. L'objectiu d'aquesta tesis doctoral és el disseny, implementació i avaluació de mètodes d'aprenentatge automàtic per a la detecció i classificació de programari maliciós, a causa de la seva capacitat per a manipular grans volums de dades així com la seva habilitat de generalització. La recerca s'ha estructurat en quatre parts. La primera part proporciona una descripció completa dels mètodes i característiques utilitzats per a la detecció i classicació de programari maliciós. La segona part consisteix en l'automatització del procés d'extracció de característiques utilitzant tècniques d'aprenentatge profund. La tercera part consisteix en la investigació de mecanismes per a combinar múltiples modalitats o fonts d'informació per a incrementar la robustesa dels classificadors basats en aprenentatge profund. La quarta part d'aquesta tesis presenta els principals problemes i reptes als que s'enfronten els analistes en seguretat, com el problema de la desigualtat entre el nombre de mostres per família, l'aprenentatge advers, entre altres. Tanmateix, proporciona una extensa avaluació dels diferents mètodes d'aprenentatge automàtic contra vàries tècniques d'ofuscació, i analitza la utilitat d'aquestes per a augmentar el conjunt de dades d'entrenament i reduir la desigualtat de mostres per família.
La lucha contra el software malicioso no se ha interrumpido desde los inicios de la era digital, resultando en una carrera armamentística, cíclica e interminable; a medida que los analistas de seguridad y investigadores mejoran sus defensas, los desarrolladores de software malicioso siguen innovando, hallando nuevos vectores de infección y mejorando las técnicas de ofuscación. Recientemente, debido al crecimiento masivo y continuo del malware, se requieren nuevos métodos para complementar los existentes y así poder proteger los sistemas de nuevos ataques y variantes. El objetivo de esta tesis doctoral es el diseño, implementación y evaluación de métodos de aprendizaje automático para la detección y clasificación de software malicioso, debido a su capacidad para manejar grandes volúmenes de datos y su habilidad de generalización. La tesis se ha estructurado en cuatro partes. La primera parte proporciona una descripción completa de los métodos y características empleados para la detección y clasificación de software malicioso. La segunda parte consiste en la automatización del proceso de extracción de características mediante aprendizaje profundo. La tercera parte consiste en la investigación de mecanismos para combinar múltiples modalidades o fuentes de información y así, incrementar la robustez de los modelos de clasificación. La cuarta parte de esta tesis presenta los principales problemas y retos a los que se enfrentan los analistas de seguridad, como el problema de la desigualdad entre el número de muestras por familia, el aprendizaje adverso, entre otros. Asimismo, proporciona una extensa evaluación de los distintos métodos de aprendizaje profundo contra varias técnicas de ofuscación, y analiza la utilidad de estas para aumentar el conjunto de entrenamiento y reducir la desigualdad de muestras por familia.
The fight against malware has never stopped since the dawn of computing. This fight has turned out to be a never-ending and cyclical arms race: as security analysts and researchers improve their defenses, malware developers continue to innovate, and new infection vectors and enhance their obfuscation techniques. Lately, due to the massive growth of malware streams, new methods have to be devised to complement traditional detection approaches and keep pace with new attacks and variants. The aim of this thesis is the design, implementation, and evaluation of machine learning approaches for the task of malware detection and classification, due to its ability to handle large volumes of data and to generalize to never-before-seen malware. This thesis is structured into four main parts. The first part provides a systematic and detailed overview of machine learning techniques to tackle the problem of malware detection and classification. The second part is devoted to automating the feature engineering process through deep learning. The third part of this thesis is devoted to investigating mechanisms to combine multiple modalities of information to increase the robustness of deep learning classifiers. The fourth part of this dissertation discusses the main issues and challenges faced by security researchers such as the availability of public benchmarks for malware research, and the problems of class imbalance, concept drift and adversarial learning. To this end, it provides an extensive evaluation of deep learning approaches for malware classification against common metamorphic techniques, and it explores their usage to augment the training set and reduce class imbalance.
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Oramas, Martín Sergio. "Knowledge extraction and representation learning for music recommendation and classification". Doctoral thesis, Universitat Pompeu Fabra, 2017. http://hdl.handle.net/10803/457709.

Texto completo da fonte
Resumo:
In this thesis, we address the problems of classifying and recommending music present in large collections. We focus on the semantic enrichment of descriptions associated to musical items (e.g., artists biographies, album reviews, metadata), and the exploitation of multimodal data (e.g., text, audio, images). To this end, we first focus on the problem of linking music-related texts with online knowledge repositories and on the automated construction of music knowledge bases. Then, we show how modeling semantic information may impact musicological studies and helps to outperform purely text-based approaches in music similarity, classification, and recommendation. Next, we focus on learning new data representations from multimodal content using deep learning architectures, addressing the problems of cold-start music recommendation and multi-label music genre classification, combining audio, text, and images. We show how the semantic enrichment of texts and the combination of learned data representations improve the performance on both tasks.
En esta tesis, abordamos los problemas de clasificar y recomendar música en grandes colecciones, centrándonos en el enriquecimiento semántico de descripciones (biografías, reseñas, metadatos), y en el aprovechamiento de datos multimodales (textos, audios e imágenes). Primero nos centramos en enlazar textos con bases de conocimiento y en su construcción automatizada. Luego mostramos cómo el modelado de información semántica puede impactar en estudios musicológicos, y contribuye a superar a métodos basados en texto, tanto en similitud como en clasificación y recomendación de música. A continuación, investigamos el aprendizaje de nuevas representaciones de datos a partir de contenidos multimodales utilizando redes neuronales, y lo aplicamos a los problemas de recomendar música nueva y clasificar géneros musicales con múltiples etiquetas, mostrando que el enriquecimiento semántico y la combinación de representaciones aprendidas produce mejores resultados.
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

Salamon, Justin J. "Melody extraction from polyphonic music signals". Doctoral thesis, Universitat Pompeu Fabra, 2013. http://hdl.handle.net/10803/123777.

Texto completo da fonte
Resumo:
Music was the first mass-market industry to be completely restructured by digital technology, and today we can have access to thousands of tracks stored locally on our smartphone and millions of tracks through cloud-based music services. Given the vast quantity of music at our fingertips, we now require novel ways of describing, indexing, searching and interacting with musical content. In this thesis we focus on a technology that opens the door to a wide range of such applications: automatically estimating the pitch sequence of the melody directly from the audio signal of a polyphonic music recording, also referred to as melody extraction. Whilst identifying the pitch of the melody is something human listeners can do quite well, doing this automatically is highly challenging. We present a novel method for melody extraction based on the tracking and characterisation of the pitch contours that form the melodic line of a piece. We show how different contour characteristics can be exploited in combination with auditory streaming cues to identify the melody out of all the pitch content in a music recording using both heuristic and model-based approaches. The performance of our method is assessed in an international evaluation campaign where it is shown to obtain state-of-the-art results. In fact, it achieves the highest mean overall accuracy obtained by any algorithm that has participated in the campaign to date. We demonstrate the applicability of our method both for research and end-user applications by developing systems that exploit the extracted melody pitch sequence for similarity-based music retrieval (version identification and query-by-humming), genre classification, automatic transcription and computational music analysis. The thesis also provides a comprehensive comparative analysis and review of the current state-of-the-art in melody extraction and a first of its kind analysis of melody extraction evaluation methodology.
La industria de la música fue una de las primeras en verse completamente reestructurada por los avances de la tecnología digital, y hoy en día tenemos acceso a miles de canciones almacenadas en nuestros dispositivos móviles y a millones más a través de servicios en la nube. Dada esta inmensa cantidad de música al nuestro alcance, necesitamos nuevas maneras de describir, indexar, buscar e interactuar con el contenido musical. Esta tesis se centra en una tecnología que abre las puertas a nuevas aplicaciones en este área: la extracción automática de la melodía a partir de una grabación musical polifónica. Mientras que identificar la melodía de una pieza es algo que los humanos pueden hacer relativamente bien, hacerlo de forma automática presenta mucha complejidad, ya que requiere combinar conocimiento de procesado de señal, acústica, aprendizaje automático y percepción sonora. Esta tarea se conoce en el ámbito de investigación como “extracción de melodía”, y consiste técnicamente en estimar la secuencia de alturas correspondiente a la melodía predominante de una pieza musical a partir del análisis de la señal de audio. Esta tesis presenta un método innovador para la extracción de la melodía basado en el seguimiento y caracterización de contornos tonales. En la tesis, mostramos cómo se pueden explotar las características de contornos en combinación con reglas basadas en la percepción auditiva, para identificar la melodía a partir de todo el contenido tonal de una grabación, tanto de manera heurística como a través de modelos aprendidos automáticamente. A través de una iniciativa internacional de evaluación comparativa de algoritmos, comprobamos además que el método propuesto obtiene resultados punteros. De hecho, logra la precisión más alta de todos los algoritmos que han participado en la iniciativa hasta la fecha. Además, la tesis demuestra la utilidad de nuestro método en diversas aplicaciones tanto de investigación como para usuarios finales, desarrollando una serie de sistemas que aprovechan la melodía extraída para la búsqueda de música por semejanza (identificación de versiones y búsqueda por tarareo), la clasificación del estilo musical, la transcripción o conversión de audio a partitura, y el análisis musical con métodos computacionales. La tesis también incluye un amplio análisis comparativo del estado de la cuestión en extracción de melodía y el primer análisis crítico existente de la metodología de evaluación de algoritmos de este tipo
La indústria musical va ser una de les primeres a veure's completament reestructurada pels avenços de la tecnologia digital, i avui en dia tenim accés a milers de cançons emmagatzemades als nostres dispositius mòbils i a milions més a través de serveis en xarxa. Al tenir aquesta immensa quantitat de música al nostre abast, necessitem noves maneres de descriure, indexar, buscar i interactuar amb el contingut musical. Aquesta tesi es centra en una tecnologia que obre les portes a noves aplicacions en aquesta àrea: l'extracció automàtica de la melodia a partir d'una gravació musical polifònica. Tot i que identificar la melodia d'una peça és quelcom que els humans podem fer relativament fàcilment, fer-ho de forma automàtica presenta una alta complexitat, ja que requereix combinar coneixement de processament del senyal, acústica, aprenentatge automàtic i percepció sonora. Aquesta tasca es coneix dins de l'àmbit d'investigació com a “extracció de melodia”, i consisteix tècnicament a estimar la seqüència de altures tonals corresponents a la melodia predominant d'una peça musical a partir de l'anàlisi del senyal d'àudio. Aquesta tesi presenta un mètode innovador per a l'extracció de la melodia basat en el seguiment i caracterització de contorns tonals. Per a fer-ho, mostrem com es poden explotar les característiques de contorns combinades amb regles basades en la percepció auditiva per a identificar la melodia a partir de tot el contingut tonal d'una gravació, tant de manera heurística com a través de models apresos automàticament. A més d'això, comprovem a través d'una iniciativa internacional d'avaluació comparativa d'algoritmes que el mètode proposat obté resultats punters. De fet, obté la precisió més alta de tots els algoritmes proposats fins la data d'avui. A demés, la tesi demostra la utilitat del mètode en diverses aplicacions tant d'investigació com per a usuaris finals, desenvolupant una sèrie de sistemes que aprofiten la melodia extreta per a la cerca de música per semblança (identificació de versions i cerca per taral•larà), la classificació de l'estil musical, la transcripció o conversió d'àudio a partitura, i l'anàlisi musical amb mètodes computacionals. La tesi també inclou una àmplia anàlisi comparativa de l'estat de l'art en extracció de melodia i la primera anàlisi crítica existent de la metodologia d'avaluació d'algoritmes d'aquesta mena.
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

"Medidas de diferencia y clasificación automática no paramétrica de datos composicionales". Universitat Politècnica de Catalunya, 2001. http://www.tesisenxarxa.net/TDX-0516101-135345/.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

Ruscitti, Fernando, e Rodrigo Felice. "Procesamiento de imágenes: paralelización de algoritmos de reconocimiento y clasificación automática de objetos". Tesis, 1997. http://hdl.handle.net/10915/2162.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Bustos, Maximiliano David. "Técnicas embedding para clasificación de imágenes en grandes bancos de datos". Bachelor's thesis, 2015. http://hdl.handle.net/11086/2827.

Texto completo da fonte
Resumo:
En este trabajo se considera el problema de clasificación de imágenes en gran escala mediante embeddings lineales. En un modelo embedding, además de generar una representación para las imágenes (entradas) se genera una representación para las clases o conceptos de interés (salidas). De esta forma, al comparar estas representaciones intermedias (imágenes y clases) en un espacio de representación común, es posible abordar de manera unificada problemas como los de clasificación y búsqueda de imágenes por contenido. Los métodos embedding son particularmente atractivos en cuanto permiten generar proyecciones a espacios de imensionalidad reducida, lo que hace posible el abordaje de problemas en gran escala (millones de imágenes, cientos de miles de conceptos) de manera eficiente. En particular, se analiza el algoritmo WSABIE propuesto por [Weston et al.,2011b] el cual, a diferencia de los esquemas tradicionales, aborda el problema de aprendizaje mediante la optimización de una función objetivo que tiene en cuenta no solo si una muestra fue bien o mal clasificada, sino cómo se ubicó su etiqueta verdadera respecto de las k mejores predicciones en una lista ordenada de posibles anotaciones.
In this work we consider the problem of large scale image classification using linear embeddings. In an embedding model, a representation of both images (inputs) and classes (outputs) is generated. Then, by comparing these intermediate representations (images and classes) in a common representation space, it is possible to solve problems like classification and image retrieval in a unified manner. Embedding methods are attractive because they allow the projection into spaces of low dimensionality where large scale problems (millions of images and hundreds of thousands of concepts) can be handled efficiently. In particular, we analyze the WSABIE algorithm proposed by [Weston et al., 2011b] which, unlike traditional methods, approaches the learning problem through the optimization of an objective function that considers not only whether the sample was correctly classified, but also the rank of the true label with respect to the k best predictions in a sorted list of possible annotations.
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Godoy, Facundo Eduardo. "Métodos clásicos de clasificación : comparación y aplicación". Bachelor's thesis, 2021. http://hdl.handle.net/11086/19768.

Texto completo da fonte
Resumo:
Tesis (Lic. en Matemática)--Universidad Nacional de Córdoba, Facultad de Matemática, Astronomía, Física y Computación, 2021.
Los problemas de clasificación o discriminación son aquellos en los que se dispone de un conjunto de elementos que provienen de dos o más poblaciones conocidas y para cada uno se ha observado una serie de variables explicativas o predictoras. Se desea clasificar un nuevo elemento en alguna de esas poblaciones utilizando los valores, conocidos, de las variables explicativas. Actualmente, los métodos de clasificación son muy estudiados y utilizados en Aprendizaje Automático y Ciencia de Datos pero aparecen en estadística desde los años 30. En este trabajo se estudió el marco teórico de los métodos clásicos de clasificación: Análisis Discriminante Lineal, Análisis Discriminante Cuadrático, Regresión logística y k - vecinos más próximos. Luego, se ideó y llevó a cabo un estudio de simulación para compararlos en distintos escenarios. Por último, se aplicaron y compararon los métodos utilizando un conjunto de datos reales en el contexto la utilización de señales Bluetooth para la trazabilidad de contactos estrechos.
Classification or discrimination problems are a set of elements that come from two or more known populations, and for each one a series of explanatory or predictable variables has been observed. The aim is to classify a new element in any of these populations using the known values of the explanatory variables. Currently, classification methods are widely studied and used in Machine Learning and Data Science; however, they have appeared in statistics since the 30s. In this research, the theoretical framework of the classic classification methods was studied: Linear Discriminant Analysis, Quadratic Discriminant Analysis, Logistic regression and k - nearest neighbors. Afterwards, a simulation study was devised and carried out to compare them in different scenarios. Lastly, these methods were applied and compared using a set of real data in the context of the use of Bluetooth signals for traceability of close contacts.
publishedVersion
Fil: Godoy, Facundo Eduardo. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación; Argentina.
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia