Artigos de revistas sobre o tema "Coalescence de binaire compacte"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Coalescence de binaire compacte".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Spera, Mario, Alessandro Alberto Trani, and Mattia Mencagli. "Compact Binary Coalescences: Astrophysical Processes and Lessons Learned." Galaxies 10, no. 4 (2022): 76. http://dx.doi.org/10.3390/galaxies10040076.
Texto completo da fonteGraziani, Luca. "Hunting for Dwarf Galaxies Hosting the Formation and Coalescence of Compact Binaries." Physics 1, no. 3 (2019): 412–29. http://dx.doi.org/10.3390/physics1030030.
Texto completo da fonteKalogera, V. "Close Binaries with Two Compact Objects." International Astronomical Union Colloquium 177 (2000): 579–84. http://dx.doi.org/10.1017/s0252921100060668.
Texto completo da fonteAbac, A. G., R. Abbott, I. Abouelfettouh, et al. "Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M ⊙ Compact Object and a Neutron Star." Astrophysical Journal Letters 970, no. 2 (2024): L34. http://dx.doi.org/10.3847/2041-8213/ad5beb.
Texto completo da fonteRasio, Frederic A., and Stuart L. Shapiro. "Hydrodynamic Evolution of Coalescing Compact Binaries." Symposium - International Astronomical Union 165 (1996): 17–28. http://dx.doi.org/10.1017/s0074180900055522.
Texto completo da fonteWEN, LINQING, and QI CHU. "EARLY DETECTION AND LOCALIZATION OF GRAVITATIONAL WAVES FROM COMPACT BINARY COALESCENCES." International Journal of Modern Physics D 22, no. 11 (2013): 1360011. http://dx.doi.org/10.1142/s0218271813600110.
Texto completo da fonteShapiro, Stuart L. "Gravitomagnetic Induction during the Coalescence of Compact Binaries." Physical Review Letters 77, no. 22 (1996): 4487–90. http://dx.doi.org/10.1103/physrevlett.77.4487.
Texto completo da fonteChen, Bing-Guang, Tong Liu, Yan-Qing Qi, et al. "Effects of Vertical Advection on Multimessenger Signatures of Black Hole Neutrino-dominated Accretion Flows in Compact Binary Coalescences." Astrophysical Journal 941, no. 2 (2022): 156. http://dx.doi.org/10.3847/1538-4357/aca406.
Texto completo da fonteYu, Shenghua, Youjun Lu, and C. Simon Jeffery. "Orbital evolution of neutron-star–white-dwarf binaries by Roche lobe overflow and gravitational wave radiation." Monthly Notices of the Royal Astronomical Society 503, no. 2 (2021): 2776–90. http://dx.doi.org/10.1093/mnras/stab626.
Texto completo da fonteMacLeod, Morgan, Kishalay De, and Abraham Loeb. "Dusty, Self-obscured Transients from Stellar Coalescence." Astrophysical Journal 937, no. 2 (2022): 96. http://dx.doi.org/10.3847/1538-4357/ac8c31.
Texto completo da fonteSpurzem, R., P. Berczik, I. Berentzen, D. Merritt, M. Preto, and P. Amaro-Seoane. "Formation and Evolution of Black Holes in Galactic Nuclei and Star Clusters." Proceedings of the International Astronomical Union 3, S246 (2007): 346–50. http://dx.doi.org/10.1017/s1743921308015901.
Texto completo da fonteChatterjee, Chayan, Manoj Kovalam, Linqing Wen, Damon Beveridge, Foivos Diakogiannis, and Kevin Vinsen. "Rapid Localization of Gravitational Wave Sources from Compact Binary Coalescences Using Deep Learning." Astrophysical Journal 959, no. 1 (2023): 42. http://dx.doi.org/10.3847/1538-4357/ad08b7.
Texto completo da fontePiccinni, Ornella Juliana. "Status and Perspectives of Continuous Gravitational Wave Searches." Galaxies 10, no. 3 (2022): 72. http://dx.doi.org/10.3390/galaxies10030072.
Texto completo da fonteRomero-Shaw, I. M., C. Talbot, S. Biscoveanu, et al. "Bayesian inference for compact binary coalescences with bilby: validation and application to the first LIGO–Virgo gravitational-wave transient catalogue." Monthly Notices of the Royal Astronomical Society 499, no. 3 (2020): 3295–319. http://dx.doi.org/10.1093/mnras/staa2850.
Texto completo da fonteKomossa, S., and J. A. Zensus. "Compact object mergers: observations of supermassive binary black holes and stellar tidal disruption events." Proceedings of the International Astronomical Union 10, S312 (2014): 13–25. http://dx.doi.org/10.1017/s1743921315007395.
Texto completo da fonteTalbot, Colm, and Eric Thrane. "Flexible and Accurate Evaluation of Gravitational-wave Malmquist Bias with Machine Learning." Astrophysical Journal 927, no. 1 (2022): 76. http://dx.doi.org/10.3847/1538-4357/ac4bc0.
Texto completo da fonteO'Shaughnessy, R., V. Kalogera, and Krzysztof Belczynski. "BINARY COMPACT OBJECT COALESCENCE RATES: THE ROLE OF ELLIPTICAL GALAXIES." Astrophysical Journal 716, no. 1 (2010): 615–33. http://dx.doi.org/10.1088/0004-637x/716/1/615.
Texto completo da fonteUsman, Samantha A., Alexander H. Nitz, Ian W. Harry, et al. "The PyCBC search for gravitational waves from compact binary coalescence." Classical and Quantum Gravity 33, no. 21 (2016): 215004. http://dx.doi.org/10.1088/0264-9381/33/21/215004.
Texto completo da fonteTsutsui, T., A. Nishizawa, and S. Morisaki. "Early warning of precessing neutron-star black hole binary mergers with the near-future gravitational-wave detectors." Monthly Notices of the Royal Astronomical Society 512, no. 3 (2022): 3878–84. http://dx.doi.org/10.1093/mnras/stac715.
Texto completo da fonteRay, Anarya, Ignacio Magaña Hernandez, Siddharth Mohite, Jolien Creighton, and Shasvath Kapadia. "Nonparametric Inference of the Population of Compact Binaries from Gravitational-wave Observations Using Binned Gaussian Processes." Astrophysical Journal 957, no. 1 (2023): 37. http://dx.doi.org/10.3847/1538-4357/acf452.
Texto completo da fonteNi, Wei-Tou, Gang Wang, and An-Ming Wu. "Astrodynamical middle-frequency interferometric gravitational wave observatory AMIGO: Mission concept and orbit design." International Journal of Modern Physics D 29, no. 04 (2020): 1940007. http://dx.doi.org/10.1142/s0218271819400078.
Texto completo da fonteMozzon, S., L. K. Nuttall, A. Lundgren, T. Dent, S. Kumar, and A. H. Nitz. "Dynamic normalization for compact binary coalescence searches in non-stationary noise." Classical and Quantum Gravity 37, no. 21 (2020): 215014. http://dx.doi.org/10.1088/1361-6382/abac6c.
Texto completo da fonteCannon, Kipp, Romain Cariou, Adrian Chapman, et al. "TOWARD EARLY-WARNING DETECTION OF GRAVITATIONAL WAVES FROM COMPACT BINARY COALESCENCE." Astrophysical Journal 748, no. 2 (2012): 136. http://dx.doi.org/10.1088/0004-637x/748/2/136.
Texto completo da fonteSamanta, Debasri, and Rajib Kumar Dolai. "Stochastic Modeling of Compact Binary Coalescences for Gravitational Wave Analysis." International Astronomy and Astrophysics Research Journal 7, no. 1 (2025): 57–67. https://doi.org/10.9734/iaarj/2025/v7i1116.
Texto completo da fonteMencagli, Mattia, Natalia Nazarova, and Mario Spera. "ISTEDDAS: a new direct N-Body code to study merging compact-object binaries." Journal of Physics: Conference Series 2207, no. 1 (2022): 012051. http://dx.doi.org/10.1088/1742-6596/2207/1/012051.
Texto completo da fonteRastello, Sara, Michela Mapelli, Ugo N. Di Carlo, et al. "Dynamics of black hole–neutron star binaries in young star clusters." Monthly Notices of the Royal Astronomical Society 497, no. 2 (2020): 1563–70. http://dx.doi.org/10.1093/mnras/staa2018.
Texto completo da fonteHamilton, Chris, and Roman R. Rafikov. "Relativistic Phase Space Diffusion of Compact Object Binaries in Stellar Clusters and Hierarchical Triples." Astrophysical Journal 961, no. 2 (2024): 237. http://dx.doi.org/10.3847/1538-4357/ad0be2.
Texto completo da fonteAbbott, B. P., R. Abbott, T. D. Abbott, et al. "GW190425: Observation of a Compact Binary Coalescence with Total Mass ∼ 3.4 M ⊙." Astrophysical Journal 892, no. 1 (2020): L3. http://dx.doi.org/10.3847/2041-8213/ab75f5.
Texto completo da fonteKopparapu, Ravi Kumar, Chad Hanna, Vicky Kalogera, et al. "Host Galaxies Catalog Used in LIGO Searches for Compact Binary Coalescence Events." Astrophysical Journal 675, no. 2 (2008): 1459–67. http://dx.doi.org/10.1086/527348.
Texto completo da fonteNielsen, Alex B. "Compact binary coalescence parameter estimations for 2.5 post-Newtonian aligned spinning waveforms." Classical and Quantum Gravity 30, no. 7 (2013): 075023. http://dx.doi.org/10.1088/0264-9381/30/7/075023.
Texto completo da fonteDobie, Dougal, Tara Murphy, David L. Kaplan, et al. "Radio afterglows from compact binary coalescences: prospects for next-generation telescopes." Monthly Notices of the Royal Astronomical Society 505, no. 2 (2021): 2647–61. http://dx.doi.org/10.1093/mnras/stab1468.
Texto completo da fonteMandel, Ilya, Christopher P. L. Berry, Frank Ohme, Stephen Fairhurst, and Will M. Farr. "Parameter estimation on compact binary coalescences with abruptly terminating gravitational waveforms." Classical and Quantum Gravity 31, no. 15 (2014): 155005. http://dx.doi.org/10.1088/0264-9381/31/15/155005.
Texto completo da fonteSingh, Mukesh Kumar, Shasvath J. Kapadia, Md Arif Shaikh, Deep Chatterjee, and Parameswaran Ajith. "Improved early warning of compact binary mergers using higher modes of gravitational radiation: a population study." Monthly Notices of the Royal Astronomical Society 502, no. 2 (2021): 1612–22. http://dx.doi.org/10.1093/mnras/stab125.
Texto completo da fonteStachie, Cosmin, Tito Dal Canton, Nelson Christensen та ін. "Searches for Modulated γ-Ray Precursors to Compact Binary Mergers in Fermi-GBM Data". Astrophysical Journal 930, № 1 (2022): 45. http://dx.doi.org/10.3847/1538-4357/ac5f53.
Texto completo da fonteDupree, William, and Sukanta Bose. "Multi-detector null-stream-based $\chi^2$ statistic for compact binary coalescence searches." Classical and Quantum Gravity 36, no. 19 (2019): 195012. http://dx.doi.org/10.1088/1361-6382/ab30cf.
Texto completo da fonteVan Den Broeck, C. "Astrophysics, cosmology, and fundamental physics with compact binary coalescence and the Einstein Telescope." Journal of Physics: Conference Series 484 (March 5, 2014): 012008. http://dx.doi.org/10.1088/1742-6596/484/1/012008.
Texto completo da fonteBiwer, C. M., Collin D. Capano, Soumi De, et al. "PyCBC Inference: A Python-based Parameter Estimation Toolkit for Compact Binary Coalescence Signals." Publications of the Astronomical Society of the Pacific 131, no. 996 (2019): 024503. http://dx.doi.org/10.1088/1538-3873/aaef0b.
Texto completo da fonteRegimbau, Tania. "The Quest for the Astrophysical Gravitational-Wave Background with Terrestrial Detectors." Symmetry 14, no. 2 (2022): 270. http://dx.doi.org/10.3390/sym14020270.
Texto completo da fonteMandel, Ilya, and Richard O'Shaughnessy. "Compact binary coalescences in the band of ground-based gravitational-wave detectors." Classical and Quantum Gravity 27, no. 11 (2010): 114007. http://dx.doi.org/10.1088/0264-9381/27/11/114007.
Texto completo da fonteNitz, Alexander H., and Yi-Fan Wang. "Search for Gravitational Waves from the Coalescence of Subsolar Mass and Eccentric Compact Binaries." Astrophysical Journal 915, no. 1 (2021): 54. http://dx.doi.org/10.3847/1538-4357/ac01d9.
Texto completo da fonteNitz, Alexander H., Collin D. Capano, Sumit Kumar, et al. "3-OGC: Catalog of Gravitational Waves from Compact-binary Mergers." Astrophysical Journal 922, no. 1 (2021): 76. http://dx.doi.org/10.3847/1538-4357/ac1c03.
Texto completo da fonteMaurya, S. K., G. Mustafa, M. Govender та Ksh Newton Singh. "Exploring physical properties of minimally deformed strange star model and constraints on maximum mass limit in f(𝒬) gravity". Journal of Cosmology and Astroparticle Physics 2022, № 10 (2022): 003. http://dx.doi.org/10.1088/1475-7516/2022/10/003.
Texto completo da fonteLiu, Yuan, Zhihui Du, Shin Kee Chung, Shaun Hooper, David Blair, and Linqing Wen. "GPU-accelerated low-latency real-time searches for gravitational waves from compact binary coalescence." Classical and Quantum Gravity 29, no. 23 (2012): 235018. http://dx.doi.org/10.1088/0264-9381/29/23/235018.
Texto completo da fonteHu, Chin-Ping, Lupin Chun-Che Lin, Kuo-Chuan Pan, et al. "A Comprehensive Analysis of the Gravitational Wave Events with the Stacked Hilbert–Huang Transform: From Compact Binary Coalescence to Supernova." Astrophysical Journal 935, no. 2 (2022): 127. http://dx.doi.org/10.3847/1538-4357/ac8165.
Texto completo da fonteVedovato, G., E. Milotti, G. A. Prodi, et al. "Minimally-modeled search of higher multipole gravitational-wave radiation in compact binary coalescences." Classical and Quantum Gravity 39, no. 4 (2022): 045001. http://dx.doi.org/10.1088/1361-6382/ac45da.
Texto completo da fonteDietz, A. "Estimation of compact binary coalescense rates from short gamma-ray burst redshift measurements." Astronomy & Astrophysics 529 (April 11, 2011): A97. http://dx.doi.org/10.1051/0004-6361/201016166.
Texto completo da fonteKapadia, Shasvath J., Dimple, Dhruv Jain, Kuntal Misra, K. G. Arun, and Resmi Lekshmi. "Rates and Beaming Angles of Gamma-Ray Bursts Associated with Compact Binary Coalescences." Astrophysical Journal Letters 976, no. 1 (2024): L10. http://dx.doi.org/10.3847/2041-8213/ad8dc7.
Texto completo da fonteWin, Aung Naing, Yu-Ming Chu, Hasrat Hussain Shah, Syed Zaheer Abbas, and Munawar Shah. "Electromagnetic counterpart to gravitational waves from coalescence of binary black hole with magnetic monopole charge." International Journal of Modern Physics A 35, no. 31 (2020): 2050205. http://dx.doi.org/10.1142/s0217751x2050205x.
Texto completo da fonteMandel, Ilya, and Floor S. Broekgaarden. "Rates of compact object coalescences." Living Reviews in Relativity 25, no. 1 (2022). http://dx.doi.org/10.1007/s41114-021-00034-3.
Texto completo da fonteBonetti, Matteo, Albino Perego, Pedro R. Capelo, Massimo Dotti, and M. Coleman Miller. "r-Process Nucleosynthesis in the Early Universe Through Fast Mergers of Compact Binaries in Triple Systems." Publications of the Astronomical Society of Australia 35 (2018). http://dx.doi.org/10.1017/pasa.2018.11.
Texto completo da fonte