Siga este link para ver outros tipos de publicações sobre o tema: Cochlea – Innervation.

Artigos de revistas sobre o tema "Cochlea – Innervation"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Cochlea – Innervation".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

Brown, M. Christian. "Single-unit labeling of medial olivocochlear neurons: the cochlear frequency map for efferent axons." Journal of Neurophysiology 111, no. 11 (June 1, 2014): 2177–86. http://dx.doi.org/10.1152/jn.00045.2014.

Texto completo da fonte
Resumo:
Medial olivocochlear (MOC) neurons are efferent neurons that project axons from the brain to the cochlea. Their action on outer hair cells reduces the gain of the “cochlear amplifier,” which shifts the dynamic range of hearing and reduces the effects of noise masking. The MOC effects in one ear can be elicited by sound in that ipsilateral ear or by sound in the contralateral ear. To study how MOC neurons project onto the cochlea to mediate these effects, single-unit labeling in guinea pigs was used to study the mapping of MOC neurons for neurons responsive to ipsilateral sound vs. those respon
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Brown, M. Christian. "Recording and labeling at a site along the cochlea shows alignment of medial olivocochlear and auditory nerve tonotopic mappings." Journal of Neurophysiology 115, no. 3 (March 1, 2016): 1644–53. http://dx.doi.org/10.1152/jn.00842.2015.

Texto completo da fonte
Resumo:
Medial olivocochlear (MOC) neurons provide an efferent innervation to outer hair cells (OHCs) of the cochlea, but their tonotopic mapping is incompletely known. In the present study of anesthetized guinea pigs, the MOC mapping was investigated using in vivo, extracellular recording, and labeling at a site along the cochlear course of the axons. The MOC axons enter the cochlea at its base and spiral apically, successively turning out to innervate OHCs according to their characteristic frequencies (CFs). Recordings made at a site in the cochlear basal turn yielded a distribution of MOC CFs with
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Raphael, Yehoash, and Richard A. Altschuler. "Structure and innervation of the cochlea." Brain Research Bulletin 60, no. 5-6 (June 2003): 397–422. http://dx.doi.org/10.1016/s0361-9230(03)00047-9.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Manley, Geoffrey A., and Christine Köppl. "Phylogenetic development of the cochlea and its innervation." Current Opinion in Neurobiology 8, no. 4 (August 1998): 468–74. http://dx.doi.org/10.1016/s0959-4388(98)80033-0.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Lavigne-Rebillard, Mireille, and Rémy Pujol. "Hair Cell Innervation in the Fetal Human Cochlea." Acta Oto-Laryngologica 105, no. 5-6 (January 1988): 398–402. http://dx.doi.org/10.3109/00016488809119492.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Bulankina, A. V., and T. Moser. "Neural Circuit Development in the Mammalian Cochlea." Physiology 27, no. 2 (April 2012): 100–112. http://dx.doi.org/10.1152/physiol.00036.2011.

Texto completo da fonte
Resumo:
The organ of Corti, the sensory epithelium of the mammalian auditory system, uses afferent and efferent synapses for encoding auditory signals and top-down modulation of cochlear function. During development, the final precisely ordered sensorineural circuit is established following excessive formation of afferent and efferent synapses and subsequent refinement. Here, we review the development of innervation of the mouse organ of Corti and its regulation.
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Huang, Eric J., Wei Liu, Bernd Fritzsch, Lynne M. Bianchi, Louis F. Reichardt, and Mengqing Xiang. "Brn3a is a transcriptional regulator of soma size, target field innervation and axon pathfinding of inner ear sensory neurons." Development 128, no. 13 (July 1, 2001): 2421–32. http://dx.doi.org/10.1242/dev.128.13.2421.

Texto completo da fonte
Resumo:
The POU domain transcription factors Brn3a, Brn3b and Brn3c are required for the proper development of sensory ganglia, retinal ganglion cells, and inner ear hair cells, respectively. We have investigated the roles of Brn3a in neuronal differentiation and target innervation in the facial-stato-acoustic ganglion. We show that absence of Brn3a results in a substantial reduction in neuronal size, abnormal neuronal migration and downregulation of gene expression, including that of the neurotrophin receptor TrkC, parvalbumin and Brn3b. Selective loss of TrkC neurons in the spiral ganglion of Brn3a−
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Whitehead, M. C., and D. K. Morest. "The development of innervation patterns in the avian cochlea." Neuroscience 14, no. 1 (January 1985): 255–76. http://dx.doi.org/10.1016/0306-4522(85)90177-0.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Wangemann, Philine, Hyoung-Mi Kim, Sara Billings, Kazuhiro Nakaya, Xiangming Li, Ruchira Singh, David S. Sharlin, Douglas Forrest, Daniel C. Marcus, and Peying Fong. "Developmental delays consistent with cochlear hypothyroidism contribute to failure to develop hearing in mice lacking Slc26a4/pendrin expression." American Journal of Physiology-Renal Physiology 297, no. 5 (November 2009): F1435—F1447. http://dx.doi.org/10.1152/ajprenal.00011.2009.

Texto completo da fonte
Resumo:
Mutations of SLC26A4 cause an enlarged vestibular aqueduct, nonsyndromic deafness, and deafness as part of Pendred syndrome. SLC26A4 encodes pendrin, an anion exchanger located in the cochlea, thyroid, and kidney. The goal of the present study was to determine whether developmental delays, possibly mediated by systemic or local hypothyroidism, contribute to the failure to develop hearing in mice lacking Slc26a4 ( Slc26a4−/−). We evaluated thyroid function by voltage and pH measurements, by array-assisted gene expression analysis, and by determination of plasma thyroxine levels. Cochlear develo
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Gao, Jiangang, Stéphane F. Maison, Xudong Wu, Keiko Hirose, Sherri M. Jones, Ildar Bayazitov, Yong Tian та ін. "Orphan Glutamate Receptor δ1 Subunit Required for High-Frequency Hearing". Molecular and Cellular Biology 27, № 12 (16 квітня 2007): 4500–4512. http://dx.doi.org/10.1128/mcb.02051-06.

Texto completo da fonte
Resumo:
ABSTRACT The function of the orphan glutamate receptor delta subunits (GluRδ1 and GluRδ2) remains unclear. GluRδ2 is expressed exclusively in the Purkinje cells of the cerebellum, and GluRδ1 is prominently expressed in inner ear hair cells and neurons of the hippocampus. We found that mice lacking the GluRδ1 protein displayed significant cochlear threshold shifts for frequencies of >16 kHz. These deficits correlated with a substantial loss of type IV spiral ligament fibrocytes and a significant reduction of endolymphatic potential in high-frequency cochlear regions. Vulnerability to acousti
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Ivanov, Emylian A., and Nikolai E. Lazarov. "Postnatal development of the afferent innervation of the mammalian cochlea." Biomedical Reviews 23 (December 31, 2012): 37. http://dx.doi.org/10.14748/bmr.v23.27.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Vass, Z., S. E. Shore, A. L. Nuttall, G. Jancsó, P. B. Brechtelsbauer, and J. M. Miller. "Trigeminal ganglion innervation of the cochlea—a retrograde transport study." Neuroscience 79, no. 2 (May 1997): 605–15. http://dx.doi.org/10.1016/s0306-4522(96)00641-0.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Robertson, Donald, Alan R. Harvey, and K. Stewart Cole. "Postnatal development of the efferent innervation of the rat cochlea." Developmental Brain Research 47, no. 2 (June 1989): 197–207. http://dx.doi.org/10.1016/0165-3806(89)90176-4.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Usami, Shin-Ichi, Jiro Hozawa, Masayuki Tazawa, Toshio Yoshihara, Makoto Igarashi, and Glenn C. Thompson. "Immunocytochemical Study of Catecholaminergic Innervation in the Guinea Pig Cochlea." Acta Oto-Laryngologica 105, sup447 (January 1988): 36–45. http://dx.doi.org/10.3109/00016488809102855.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Gunewardene, Niliksha, Duncan Crombie, Mirella Dottori, and Bryony A. Nayagam. "Innervation of Cochlear Hair Cells by Human Induced Pluripotent Stem Cell-Derived NeuronsIn Vitro." Stem Cells International 2016 (2016): 1–10. http://dx.doi.org/10.1155/2016/1781202.

Texto completo da fonte
Resumo:
Induced pluripotent stem cells (iPSCs) may serve as an autologous source of replacement neurons in the injured cochlea, if they can be successfully differentiated and reconnected with residual elements in the damaged auditory system. Here, we explored the potential of hiPSC-derived neurons to innervate early postnatal hair cells, using establishedin vitroassays. We compared two hiPSC lines against a well-characterized hESC line. After ten days’ coculturein vitro, hiPSC-derived neural processes contacted inner and outer hair cells in whole cochlear explant cultures. Neural processes from hiPSC-
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Gil-Loyzaga, Pablo, M. Visitación Bartolomé, and M. Angeles Vicente-Torres. "Serotonergic innervation of the organ of corti of the cat cochlea." NeuroReport 8, no. 16 (November 1997): 3519–21. http://dx.doi.org/10.1097/00001756-199711100-00020.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Raphael, Yehoash, Marc Lenoir, Romuald Wroblewski, and Remy Pujol. "The sensory epithelium and its innervation in the mole rat cochlea." Journal of Comparative Neurology 314, no. 2 (December 8, 1991): 367–82. http://dx.doi.org/10.1002/cne.903140211.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Vass, Zoltán, Susan E. Shore, Alfred L. Nuttall, and Josef M. Miller. "Endolymphatic Hydrops Reduces Retrograde Labeling of Trigeminal Innervation to the Cochlea." Experimental Neurology 151, no. 2 (June 1998): 241–48. http://dx.doi.org/10.1006/exnr.1998.6813.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Fermin, Cesar D. "Tritiated thymidine in the chick embryo inner ear." Proceedings, annual meeting, Electron Microscopy Society of America 47 (August 6, 1989): 846–47. http://dx.doi.org/10.1017/s0424820100156213.

Texto completo da fonte
Resumo:
Development of the chick (Gallus domesticus) inner ear has been studied, and the maturation of cells that detect sound has been analyzed at the E.M. level [1,2,3]. Other workers showed correspondence between ultrastructural maturation and behavioral responses [4,5]. In mammals [6] hair cells mature after ceasation of mitosis {Fig.l}, in a pattern so that older cells are in the base of the cochlea while younger cells are in the apex [7]. But, electrophysiology indicates that cells at the base do not function first. Chicks are precocious with well developed sensory organs at birth, and their emb
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Scheffel, Jennifer L., Samiha S. Mohammed, Chloe K. Borcean, Annie J. Parng, Hyun Ju Yoon, Darwin A. Gutierrez, and Wei-Ming Yu. "Spatiotemporal Analysis of Cochlear Nucleus Innervation by Spiral Ganglion Neurons that Serve Distinct Regions of the Cochlea." Neuroscience 446 (October 2020): 43–58. http://dx.doi.org/10.1016/j.neuroscience.2020.08.029.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Husseman, Jacob W., Kwang Pak, Eduardo Chavez, and Allen Ryan. "R443 – Organotypic Co-Culture of Spiral Ganglion and Organ of Corti." Otolaryngology–Head and Neck Surgery 139, no. 2_suppl (August 2008): P192—P193. http://dx.doi.org/10.1016/j.otohns.2008.05.599.

Texto completo da fonte
Resumo:
Problem The ability to carry out in vitro culture of the auditory neuroepithelium has provided a powerful means of studying inner ear development. Recently, we have developed an organotypic culture technique that mimics the perinatal cochlea in vivo. Methods Using sterile microdissection and in vitro methods, we have been able to co-culture explanted spiral ganglion (SG) with separate explanted organ of Corti (oC) from different neonatal mice. The SG and oC were co-cultured in their correct anatomical positions. Success of the technique appears dependent on the use of culture plate inserts whi
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Simmons, Dwayne D. "A transient afferent innervation of outer hair cells in the postnatal cochlea." NeuroReport 5, no. 11 (June 1994): 1309–12. http://dx.doi.org/10.1097/00001756-199406000-00003.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Simmons, Dwayne D. "A transient afferent innervation of outer hair cells in the postnatal cochlea." NeuroReport 5, no. 11 (June 1994): 1309–12. http://dx.doi.org/10.1097/00001756-199406270-00003.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Lyon, Michael J., and Rami N. Payman. "Comparison of the vascular innervation of the rat cochlea and vestibular system." Hearing Research 141, no. 1-2 (March 2000): 189–98. http://dx.doi.org/10.1016/s0378-5955(00)00004-6.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Pillsbury, H. C., S. Pulver, V. N. Carrasco, K. Scruggs, D. Carver, L. de Serres, M. Bleynat, and J. Prazma. "Glyoxylic Acid in the Study of Autonomic Innervation in the Gerbil Cochlea." Archives of Otolaryngology - Head and Neck Surgery 118, no. 4 (April 1, 1992): 413–16. http://dx.doi.org/10.1001/archotol.1992.01880040079013.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

Ruggero, M. A., and N. C. Rich. "Timing of spike initiation in cochlear afferents: dependence on site of innervation." Journal of Neurophysiology 58, no. 2 (August 1, 1987): 379–403. http://dx.doi.org/10.1152/jn.1987.58.2.379.

Texto completo da fonte
Resumo:
1. The phase of excitation of inner hair cells (IHCs) relative to basilar membrane motion has been estimated as a function of best frequency (BF) (or, equivalently, cochlear location) by recording responses to tones (100–1,000 Hz) from chinchilla cochlear afferent axons at their central exit from the internal auditory meatus. 2. The time of IHC excitation (i.e., the time of chemical transmitter release) was derived from the neural recordings at near-threshold levels by applying a correction for the latency of synaptic processes and the propagation time of action potentials. 3. The phase of bas
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Tziridis, Konstantin, and Holger Schulze. "Preventive Effects of Ginkgo-Extract EGb 761® on Noise Trauma-Induced Cochlear Synaptopathy." Nutrients 14, no. 15 (July 22, 2022): 3015. http://dx.doi.org/10.3390/nu14153015.

Texto completo da fonte
Resumo:
Noise trauma-induced loss of ribbon synapses at the inner hair cells (IHC) of the cochlea may lead to hearing loss (HL), resulting in tinnitus. We are convinced that a successful and sustainable therapy of tinnitus has to treat both symptom and cause. One of these causes may be the mentioned loss of ribbon synapses at the IHC of the cochlea. In this study, we investigated the possible preventive and curative effects of the Ginkgo biloba extract EGb 761® on noise-induced synaptopathy, HL, and tinnitus development in Mongolian gerbils (Meriones unguiculatus). To this end, 37 male animals receive
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

Nitecka, Liliana M., and Hanna M. Sobkowicz. "The GABA/GAD innervation within the inner spiral bundle in the mouse cochlea." Hearing Research 99, no. 1-2 (September 1996): 91–105. http://dx.doi.org/10.1016/s0378-5955(96)00088-3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Morris, John-Clay K., Patricia E. Phelps, and Dwayne D. Simmons. "NADPH-diaphorase histochemistry reveals an autonomic-like innervation in the postnatal hamster cochlea." Journal of Comparative Neurology 412, no. 3 (September 27, 1999): 458–68. http://dx.doi.org/10.1002/(sici)1096-9861(19990927)412:3<458::aid-cne6>3.0.co;2-f.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Stewart Cole, K., and Donald Robertson. "Early efferent innervation of the developing rat cochlea studied with a carbocyanine dye." Brain Research 575, no. 2 (March 1992): 223–30. http://dx.doi.org/10.1016/0006-8993(92)90083-l.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Okamura, Hiro-oki, Isako Shibahara-Maruyama, Naonori Sugai, and Joe C. Adams. "Innervation of supporting cells in the guinea pig cochlea detected in bloc-surface preparations." NeuroReport 13, no. 13 (September 2002): 1585–88. http://dx.doi.org/10.1097/00001756-200209160-00002.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Maison, Stéphane F., Douglas E. Vetter та M. Charles Liberman. "A Novel Effect of Cochlear Efferents: In Vivo Response Enhancement Does Not Require α9 Cholinergic Receptors". Journal of Neurophysiology 97, № 5 (травень 2007): 3269–78. http://dx.doi.org/10.1152/jn.00067.2007.

Texto completo da fonte
Resumo:
Outer hair cells in the mammalian cochlea receive a cholinergic efferent innervation that constitutes the effector arm of a sound-evoked negative feedback loop. The well-studied suppressive effects of acetylcholine (ACh) release from efferent terminals are mediated by α9/α10 ACh receptors and are potently blocked by strychnine. Here, we report a novel, efferent-mediated enhancement of cochlear sound-evoked neural responses and otoacoustic emissions in mice. In controls, a slow enhancement of response amplitude to supranormal levels appears after recovery from the classic suppressive effects se
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Liberman, M. Charles, Leslie W. Dodds, and Sarah Pierce. "Afferent and efferent innervation of the cat cochlea: Quantitative analysis with light and electron microscopy." Journal of Comparative Neurology 301, no. 3 (November 15, 1990): 443–60. http://dx.doi.org/10.1002/cne.903010309.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Whitlon, D. S., and H. M. Sobkowicz. "Patterns of hair cell survival and innervation in the cochlea of the Bronx waltzer mouse." Journal of Neurocytology 20, no. 11 (November 1991): 886–901. http://dx.doi.org/10.1007/bf01190467.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Schwartz, I. R., and A. F. Ryan. "Amino acid labeling patterns in the efferent innervation of the cochlea: An electron microscopic autoradiographic study." Journal of Comparative Neurology 246, no. 4 (April 22, 1986): 500–512. http://dx.doi.org/10.1002/cne.902460407.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

Jeng, Jing‐Yi, Adam J. Carlton, Stuart L. Johnson, Steve D. M. Brown, Matthew C. Holley, Michael R. Bowl, and Walter Marcotti. "Biophysical and morphological changes in inner hair cells and their efferent innervation in the ageing mouse cochlea." Journal of Physiology 599, no. 1 (November 17, 2020): 269–87. http://dx.doi.org/10.1113/jp280256.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

Pamulova, Lucia, Birgitta Linder, and Helge Rask-Andersen. "Innervation of the Apical Turn of the Human Cochlea: A Light Microscopic and Transmission Electron Microscopic Investigation." Otology & Neurotology 27, no. 2 (February 2006): 270–75. http://dx.doi.org/10.1097/01.mao.0000187239.56583.d2.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

Furness, David N., and D. Maxwell Lawton. "Comparative Distribution of Glutamate Transporters and Receptors in Relation to Afferent Innervation Density in the Mammalian Cochlea." Journal of Neuroscience 23, no. 36 (December 10, 2003): 11296–304. http://dx.doi.org/10.1523/jneurosci.23-36-11296.2003.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Karnes, Hope Elizabeth, Peter Nicholas Scaletty, and Dianne Durham. "Histochemical and Fluorescent Analyses of Mitochondrial Integrity in Chick Auditory Neurons following Deafferentation." Journal of the American Academy of Audiology 21, no. 03 (March 2010): 204–18. http://dx.doi.org/10.3766/jaaa.21.3.9.

Texto completo da fonte
Resumo:
Background: Neurons rely exclusively on mitochondrial oxidative phosphorylation to meet cellular energy demands, and disruption of mitochondrial function often precipitates neuronal cell death. Auditory neurons in the chick brain stem (n. magnocellularis [NM]) receive glutamatergic innervation exclusively from ipsilateral eighth nerve afferents. Cochlea removal permanently disrupts afferent support and ultimately triggers apoptotic cell death in 30–50% of ipsilateral, deafferented neurons. Here, we evaluated whether disruption of mitochondrial function occurs during deafferentation-induced neu
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Reuss, Stefan, Daniel Balmaceda, Mirra Elgurt, and Randolf Riemann. "Neuronal Cytoglobin in the Auditory Brainstem of Rat and Mouse: Distribution, Cochlear Projection, and Nitric Oxide Production." Brain Sciences 13, no. 1 (January 5, 2023): 107. http://dx.doi.org/10.3390/brainsci13010107.

Texto completo da fonte
Resumo:
Cytoglobin (Cygb), a hemoprotein of the globin family, is expressed in the supportive tissue cells of the fibroblast lineage and in distinct neuronal cell populations. The expression pattern and regulatory parameters of fibroblasts and related cells were studied in organs such as the kidney and liver in a variety of animal models. In contrast, knowledge about cytoglobin-expressing neurons is sparse. Only a few papers described the distribution in the brain as ubiquitous with a restricted number of neurons in focal regions. Although there is evidence for cytoglobin involvement in neuronal hypox
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

Bardhan, Tanaya, Jing‐Yi Jeng, Marco Waldmann, Federico Ceriani, Stuart L. Johnson, Jennifer Olt, Lukas Rüttiger, Walter Marcotti, and Matthew C. Holley. "Gata3 is required for the functional maturation of inner hair cells and their innervation in the mouse cochlea." Journal of Physiology 597, no. 13 (May 28, 2019): 3389–406. http://dx.doi.org/10.1113/jp277997.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

Ofsie, Michael S., Anne K. Hennig, Elizabeth P. Messana, and Douglas A. Cotanche. "Sound damage and gentamicin treatment produce different patterns of damage to the efferent innervation of the chick cochlea." Hearing Research 113, no. 1-2 (November 1997): 207–23. http://dx.doi.org/10.1016/s0378-5955(97)00150-0.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

Hemond, Sharon G., and D. Kent Morest. "Formation of the cochlea in the chicken embryo: sequence of innervation and localization of basal lamina-associated molecules." Developmental Brain Research 61, no. 1 (July 1991): 87–96. http://dx.doi.org/10.1016/0165-3806(91)90117-2.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

Harley, Randall J., Joseph P. Murdy, Zhirong Wang, Michael C. Kelly, Tessa-Jonne F. Ropp, Sehoon H. Park, Patricia F. Maness, Paul B. Manis, and Thomas M. Coate. "Neuronal cell adhesion molecule (NrCAM) is expressed by sensory cells in the cochlea and is necessary for proper cochlear innervation and sensory domain patterning during development." Developmental Dynamics 247, no. 7 (April 10, 2018): 934–50. http://dx.doi.org/10.1002/dvdy.24629.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

Fechner, Frank P., Joseph B. Nadol, Barbara J. Burgess, and M. Christian Brown. "Innervation of supporting cells in the apical turns of the guinea pig cochlea is from type II afferent fibers." Journal of Comparative Neurology 429, no. 2 (2000): 289–98. http://dx.doi.org/10.1002/1096-9861(20000108)429:2<289::aid-cne9>3.0.co;2-z.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

Schimmang, T., L. Minichiello, E. Vazquez, I. San Jose, F. Giraldez, R. Klein, and J. Represa. "Developing inner ear sensory neurons require TrkB and TrkC receptors for innervation of their peripheral targets." Development 121, no. 10 (October 1, 1995): 3381–91. http://dx.doi.org/10.1242/dev.121.10.3381.

Texto completo da fonte
Resumo:
The trkB and trkC genes are expressed during the formation of the vestibular and auditory system. To elucidate the function of trkB and trkC during this process, we have analysed mice carrying a germline mutation in the tyrosine kinase catalytic domain of these genes. Neuroanatomical analysis of homozygous mutant mice revealed neuronal deficiencies in the vestibular and cochlear ganglia. In trkB (−/−) animals vestibular neurons and a subset of cochlear neurons responsible for the innervation of outer hair cells were drastically reduced. The peripheral targets of the respective neurons showed s
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

Manley, Geoffrey A., Christiane Haeseler, and Jutta Brix. "Innervation patterns and spontaneous activity of afferent fibres to the lagenar macula and apical basilar papilla of the chick's cochlea." Hearing Research 56, no. 1-2 (November 1991): 211–26. http://dx.doi.org/10.1016/0378-5955(91)90172-6.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

Eybalin, M., G. Charachon, and N. Renard. "Dopaminergic lateral efferent innervation of the guinea-pig cochlea: Immunoelectron microscopy of catecholamine-synthesizing enzymes and effect of 6-hydroxydopamine." Neuroscience 54, no. 1 (May 1993): 133–42. http://dx.doi.org/10.1016/0306-4522(93)90389-w.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

Kaiser, Alexander, Olga Alexandrova, and Benedikt Grothe. "Urocortin-expressing olivocochlear neurons exhibit tonotopic and developmental changes in the auditory brainstem and in the innervation of the cochlea." Journal of Comparative Neurology 519, no. 14 (July 27, 2011): 2758–78. http://dx.doi.org/10.1002/cne.22650.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

Graham, C. E., and D. E. Vetter. "The Mouse Cochlea Expresses a Local Hypothalamic-Pituitary-Adrenal Equivalent Signaling System and Requires Corticotropin-Releasing Factor Receptor 1 to Establish Normal Hair Cell Innervation and Cochlear Sensitivity." Journal of Neuroscience 31, no. 4 (January 26, 2011): 1267–78. http://dx.doi.org/10.1523/jneurosci.4545-10.2011.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!