Siga este link para ver outros tipos de publicações sobre o tema: Collins Function.

Livros sobre o tema "Collins Function"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 48 melhores livros para estudos sobre o assunto "Collins Function".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os livros das mais diversas áreas científicas e compile uma bibliografia correta.

1

Frédéric, Fages, e Araki K, eds. Low molecular mass gelators: Design, self-assembly, function. Berlin: Springer, 2005.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Frederic, Fages, e Araki K, eds. Low molecular mass gelators: Design, self-assembly, function. Berlin: Springer, 2005.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Nishinari, Katsuyoshi, e Etsushiro Doi. Food hydrocolloids: Structures, properties, and functions. New York: Springer Science, 1993.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Hidalgo-Álvarez, Roque. Structure and functional properties of colloidal systems. Boca Raton: CRC Press, 2010.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Hidalgo-Álvarez, Roque. Structure and functional properties of colloidal systems. Boca Raton: CRC Press, 2010.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Chitosan-based hydrogels: Functions and applications. Boca Raton, FL: CRC Press, 2012.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Yao, Kangde. Chitosan-based hydrogels: Functions and applications. Boca Raton, FL: CRC Press, 2012.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Roque, Hidalgo-Alvarez, ed. Structure and functional properties of colloidal systems. Boca Raton: Taylor & Francis, 2009.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Polymer Networks Group Meeting (16th 2002 Autrans, France). Functional networks and gels: Papers presented at the 16th Polymer Networks Group Meeting : polymer networks 2002 : held in Autrans, France, 2-6 September 2002. Editado por Geissler Erik e International Union of Pure and Applied Chemistry. Macromolecular Division. Weinheim, Germany: Wiley-VCH, 2003.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Faramaz, Davarian, Jet Propulsion Laboratory (U.S.) e Advanced Communications Technology Satellite (ACTS) Propagation Studies Workshop (7th : 1995 : Fort Collins, Colo.), eds. Proceedings of the nineteenth NASA Propagation Experimenters Meeting (NAPEX XIX) and the Advanced Communications Technology Satellite (ACTS) Propagation Studies Workshop (APSW VII) held in Fort Collins, Colorado, June 14-16, 1995. Pasadena, Calif: National Aeronautics and Space Administration, Jet Propulsion Laboratory, California Institute of Technology, 1995.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Functional Molecular Gels. Royal Society of Chemistry, 2013.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Li, Junjie, Kangde Yao, Fanglian Yao e Yuji Yin. Chitosan-Based Hydrogels: Functions and Applications. Taylor & Francis Group, 2017.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Li, Junjie, Kangde Yao, Fanglian Yao e Yuji Yin. Chitosan-Based Hydrogels: Functions and Applications. Taylor & Francis Group, 2016.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Yao, Kangde, Yuji Yin e Junjie Lifanglian Yao. Chitosan-Based Hydrogels: Functions and Applications. Taylor & Francis Group, 2011.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Li, Junjie, Kangde Yao, Fanglian Yao e Yuji Yin. Chitosan-Based Hydrogels: Functions and Applications. Taylor & Francis Group, 2016.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Razavi, Seyed M. A. Emerging Natural Hydrocolloids: Rheology and Functions. Wiley & Sons, Incorporated, John, 2019.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Razavi, Seyed M. A. Emerging Natural Hydrocolloids: Rheology and Functions. Wiley & Sons, Incorporated, John, 2019.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Razavi, Seyed M. A. Emerging Natural Hydrocolloids: Rheology and Functions. Wiley & Sons, Incorporated, John, 2019.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Razavi, Seyed M. A. Emerging Natural Hydrocolloids: Rheology and Functions. Wiley & Sons, Incorporated, John, 2019.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Osada, Yoshihito, Jun Li e Justin Cooper-White. Functional Hydrogels as Biomaterials. Springer, 2018.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Smart Hydrogel Functional Materials. Springer-Verlag Berlin and Heidelberg GmbH &, 2013.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Wei, Wang, Liang-Yin Chu, Rui Xie e Xiao-Jie Ju. Smart Hydrogel Functional Materials. Springer, 2016.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Wei, Wang, Liang-Yin Chu, Rui Xie e Xiao-Jie Ju. Smart Hydrogel Functional Materials. Springer London, Limited, 2013.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Osada, Yoshihito, Jun Li e Justin Cooper-White. Functional Hydrogels as Biomaterials. Springer, 2019.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Osada, Yoshihito, Ryuzo Kawamura e Ken-Ichi Sano. Hydrogels of Cytoskeletal Proteins: Preparation, Structure, and Emergent Functions. Springer, 2018.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

Osada, Yoshihito, Ryuzo Kawamura e Ken-Ichi Sano. Hydrogels of Cytoskeletal Proteins: Preparation, Structure, and Emergent Functions. Springer London, Limited, 2016.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Osada, Yoshihito, Ryuzo Kawamura e Ken-Ichi Sano. Hydrogels of Cytoskeletal Proteins: Preparation, Structure, and Emergent Functions. Springer, 2016.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

Micelles: Structural Biochemistry, Formation and Functions and Usage. Nova Science Publishers, Incorporated, 2013.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Gels Structures Properties And Functions Fundamentals And Applications. Springer, 2009.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Fages, Frederic. Low Molecular Mass Gelators: Design, Self-Assembly, Function. Springer Berlin / Heidelberg, 2010.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Hidalgo-Alvarez, Roque. Structure and Functional Properties of Colloidal Systems. Taylor & Francis Group, 2017.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Structure and functional properties of colloidal systems. Boca Raton: Taylor & Francis, 2009.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Hidalgo-Alvarez, Roque. Structure and Functional Properties of Colloidal Systems. Taylor & Francis Group, 2009.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Fages, Frederic. Low Molecular Mass Gelators : Design, Self-Assembly, Function (Topics in Current Chemistry) (Topics in Current Chemistry). Springer, 2005.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Cirillo, Giuseppe, e Umile Gianfranco Spizzirri. Functional Hydrogels in Drug Delivery. Taylor & Francis Group, 2021.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

Jiang, Yue-Han. Functional properties of carp and pink salmon surimi and surimi-based products. 1994.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

(Editor), Erik Geissler, I. Meisel (Editor), S. Spiegel (Editor), A. Carrick (Editor) e M. Staffilani (Editor), eds. Macromolecular Symposia, No. 200: Functional Networks and Gels (Macromolecular Symposia). Wiley-VCH, 2004.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

Hidalgo-Alvarez, Roque. Structure and Functional Properties of Colloidal Systems. Taylor & Francis Group, 2009.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Functional Hydrogels in Drug Delivery: Key Features and Future Perspectives. Taylor & Francis Group, 2017.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Cirillo, Giuseppe, e Umile Gianfranco Spizzirri. Functional Hydrogels in Drug Delivery: Key Features and Future Perspectives. Taylor & Francis Group, 2017.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

Cirillo, Giuseppe, e Umile Gianfranco Spizzirri. Functional Hydrogels in Drug Delivery: Key Features and Future Perspectives. Taylor & Francis Group, 2017.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

Cirillo, Giuseppe, e Umile Gianfranco Spizzirri. Functional Hydrogels in Drug Delivery: Key Features and Future Perspectives. Taylor & Francis Group, 2017.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

Cirillo, Giuseppe, e Umile Gianfranco Spizzirri. Functional Hydrogels in Drug Delivery: Key Features and Future Perspectives. Taylor & Francis Group, 2017.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

Raghunathan, Karthik, e Andrew Shaw. Crystalloids in critical illness. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780199600830.003.0057.

Texto completo da fonte
Resumo:
‘Crystalloid’ refers to solutions of crystalline substances that can pass through a semipermeable membrane and are distributed widely in body fluid compartments. The conventional Starling model predicts transvascular exchange based on the net balance of opposing hydrostatic and oncotic forces. Based on this model, colloids might be considered superior resuscitative fluids. However, observations of fluid behaviour during critical illness are not consistent with such predictions. Large randomized controlled studies have consistently found that colloids offer no survival advantage relative to crystalloids in critically-ill patients. A revised Starling model describes a central role for the endothelial glycocalyx in determining fluid disposition. This model supports crystalloid utilization in most critical care settings where the endothelial surface layer is disrupted and lower capillary pressures (hypovolaemia) make volume expansion with crystalloids effective, since transvascular filtration decreases, intravascular retention increases and clearance is significantly reduced. There are important negative consequences of both inadequate and excessive crystalloid resuscitation. Precise dosing may be titrated based on functional measures of preload responsiveness like pulse pressure variation or responses to manoeuvres such as passive leg raising. Crystalloids have variable electrolyte concentrations, volumes of distribution, and, consequently variable effects on plasma pH. Choosing balanced crystalloid solutions for resuscitation may be potentially advantageous versus ‘normal’ (isotonic, 0.9%) saline solutions. When used as the primary fluid for resuscitation, saline solutions may have adverse effects in critically-ill patients secondary to a reduction in the strong ion difference and hyperchloraemic, metabolic acidosis. Significant negative effects on immune and renal function may result as well.
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

Myburgh, John, e Naomi E. Hammond. Choice of resuscitation fluid. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780199600830.003.0069.

Texto completo da fonte
Resumo:
Fluid resuscitation is a ubiquitous intervention in critically-ill patients. There is wide variation in practice and emerging evidence that the choice of resuscitation fluid may affect outcome in selected patient populations. It is likely that beneficial or adverse effects relate not only to the physicochemical properties of the fluid but also to the volume (dose) and rate of administration. Interstitial oedema is a common side-effect associated with all fluids and its development is associated with organ dysfunction. Crystalloids should be first-choice resuscitation fluids for almost all patients, with evidence that balanced salt solutions confer any benefit over saline being limited to observational data. Consideration of serum sodium (or osmolality), pH, renal function and coagulation status may affect selection of a specific crystalloid solution. On the balance of evidence, colloids do not confer any clinical advantage over crystalloids and they should be used with caution, if at all. Albumin is contraindicated for the resuscitation of patients with severe traumatic brain injury. Hydroxyethyl starch is associated with increased risk of death and acute kidney injury in critically-ill patients, particularly those with severe sepsis and septic shock. Current evidence does not support the use of other semi-synthetic colloids for resuscitation.
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

Deruelle, Nathalie, e Jean-Philippe Uzan. The N-body problem. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198786399.003.0013.

Texto completo da fonte
Resumo:
This chapter discusses the N-body problem. In 1886, Karl Weierstrass submitted the following question to the scientific community on the occasion of a mathematical competition to mark the 60th birthday of King Oscar II of Sweden. Weierstrass asked that, ‘given a system of arbitrarily many mass points that attract each other according to Newton’s laws, try to find, under the assumption that no two points ever collide, a representation of the coordinates of each point as a series in a variable which is some known function of time and for all of whose values the series converges uniformly’. Henri Poincaré showed that the equations of motion for more than two gravitational bodies are not in general integrable and won the competition. However, the jury awarded the prize to Poincaré not for solving the problem, but for coming up with the first ideas of what later became known as chaos theory.
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

Aarts, D. G. A. L. Soft interfaces: the case of colloid–polymer mixtures. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198789352.003.0013.

Texto completo da fonte
Resumo:
In this chapter we discuss the interface of a phase separated colloid-polymer mixture. We start by highlighting a number of experimental studies, illustrating the richness of colloidal interface phenomena. This is followed by a derivation of the bulk phase behaviour within free volume theory. We subsequently calculate the interfacial tension using a squared gradient approach. The interfacial tension turns out to be ultralow, easily a million times smaller than a molecular interfacial tension. From the bulk and interface calculations we obtain the capillary length and compare to experiments, where good overall agreement is found. Finally, we focus on the thermal capillary waves of the interface and derive the static and dynamic height–height correlation functions, which describe the experimental data very well. We end with an outlook, where we address some outstanding questions concerning the behaviour of interfaces, to which colloids may provide unique insights.
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

Furst, Eric M., e Todd M. Squires. Light scattering microrheology. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780199655205.003.0005.

Texto completo da fonte
Resumo:
The fundamentals and best practices of passive microrheology using dynamic light scattering and diffusing wave spectroscopy are discussed. The principles of light scattering are introduced and applied in both the single and multiple scattering regimes, including derivations of the light and field autocorrelation functions. Applications to high-frequency microrheology and polymer dynamics are presented, including inertial corrections. Methods to treat gels and other non-ergodic samples, including multi-speckle and optical mixing designs are discussed. Dynamic light scattering (DLS) is a well established method for measuring the motion of colloids, proteins and macromolecules. Light scattering has several advantages for microrheology, especially given the availability of commercial instruments, the relatively large sample volumes that average over many probes, and the sensitivity of the measurement to small particle displacements, which can extend the range of length and timescales probed beyond those typically accessed by the methods of multiple particle tracking and bulk rheology.
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia