Artigos de revistas sobre o tema "Combustion-Deflagration-Detonation transition"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Combustion-Deflagration-Detonation transition".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Debnath, Pinku, e Krishna Murari Pandey. "Computational Study of Deflagration to Detonation Transition in Pulse Detonation Engine Using Shchelkin Spiral". Applied Mechanics and Materials 772 (julho de 2015): 136–40. http://dx.doi.org/10.4028/www.scientific.net/amm.772.136.
Texto completo da fonteMa, Hu, Zhenjuan Xia, Wei Gao, Changfei Zhuo e Dong Wang. "Numerical simulation of the deflagration-to-detonation transition of iso-octane vapor in an obstacle-filled tube". International Journal of Spray and Combustion Dynamics 10, n.º 3 (13 de fevereiro de 2018): 244–59. http://dx.doi.org/10.1177/1756827718758047.
Texto completo da fonteDavis, Scott, Derek Engel, Kees van Wingerden e Erik Merilo. "Can gases behave like explosives: Large-scale deflagration to detonation testing". Journal of Fire Sciences 35, n.º 5 (setembro de 2017): 434–54. http://dx.doi.org/10.1177/0734904117715648.
Texto completo da fonteQiu, Hua, Zheng Su e Cha Xiong. "Experimental investigation on multi-cycle two-phase spiral pulse detonation tube of two configurations". Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 233, n.º 11 (4 de dezembro de 2018): 4166–75. http://dx.doi.org/10.1177/0954410018817455.
Texto completo da fonteSmirnov, Nickolay, e Valeriy Nikitin. "Three-dimensional simulation of combustion, detonation and deflagration to detonation transition processes". MATEC Web of Conferences 209 (2018): 00003. http://dx.doi.org/10.1051/matecconf/201820900003.
Texto completo da fonteAdoghe, Joseph, Weiming Liu, Jonathan Francis e Akinola Adeniyi. "Investigation into mechanisms of deflagration-to-detonation using Direct Numerical Simulations". E3S Web of Conferences 128 (2019): 03002. http://dx.doi.org/10.1051/e3sconf/201912803002.
Texto completo da fonteCojocea, Andrei Vlad, Ionuț Porumbel, Mihnea Gall e Tudor Cuciuc. "Experimental Investigations on the Impact of Hydrogen Injection Apertures in Pulsed Detonation Combustor". Energies 17, n.º 19 (1 de outubro de 2024): 4918. http://dx.doi.org/10.3390/en17194918.
Texto completo da fonteHuang, Xiaolong, Ning Li e Yang Kang. "Research on Optical Diagnostic Method of PDE Working Status Based on Visible and Near-Infrared Radiation Characteristics". Energies 14, n.º 18 (10 de setembro de 2021): 5703. http://dx.doi.org/10.3390/en14185703.
Texto completo da fonteFrolov, Sergey M., Igor O. Shamshin, Viktor S. Aksenov, Vladislav S. Ivanov e Pavel A. Vlasov. "Ion Sensors for Pulsed and Continuous Detonation Combustors". Chemosensors 11, n.º 1 (1 de janeiro de 2023): 33. http://dx.doi.org/10.3390/chemosensors11010033.
Texto completo da fonteBrailovsky, I., L. Kagan e G. Sivashinsky. "Combustion waves in hydraulically resisted systems". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 370, n.º 1960 (13 de fevereiro de 2012): 625–46. http://dx.doi.org/10.1098/rsta.2011.0341.
Texto completo da fonteVasyliv, S. S., N. S. Pryadko e S. G. Bondarenko. "Combustion and detonation of paste fuel of rocket engine". Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, n.º 5 (30 de outubro de 2023): 72–76. http://dx.doi.org/10.33271/nvngu/2023-5/072.
Texto completo da fonteBai, Qiaodong, Jiaxiang Han, Shijian Zhang e Chunsheng Weng. "Experimental study on the auto-initiation of rotating detonation with high-temperature hydrogen-rich gas". Physics of Fluids 35, n.º 4 (abril de 2023): 045121. http://dx.doi.org/10.1063/5.0144322.
Texto completo da fonteShamsadin Saeid, Mohammad Hosein, e Maryam Ghodrat. "Numerical Simulation of the Influence of Hydrogen Concentration on Detonation Diffraction Mechanism". Energies 15, n.º 22 (20 de novembro de 2022): 8726. http://dx.doi.org/10.3390/en15228726.
Texto completo da fonteDebnath, Pinku, e K. M. Pandey. "Computational fluid dynamics simulation of detonation wave propagation in modified pulse detonation combustor". E3S Web of Conferences 430 (2023): 01243. http://dx.doi.org/10.1051/e3sconf/202343001243.
Texto completo da fonteProkopenko, V. M., e V. V. Azatyan. "Chain-Thermal Explosions and the Transition from Deflagration Combustion to Detonation". Russian Journal of Physical Chemistry A 92, n.º 1 (janeiro de 2018): 42–46. http://dx.doi.org/10.1134/s0036024418010193.
Texto completo da fonteChen, Shaozhong, Jiequan Li e Tong Zhang. "Transition from a Deflagration to a Detonation in Gas Dynamic Combustion". Chinese Annals of Mathematics 24, n.º 04 (outubro de 2003): 423–32. http://dx.doi.org/10.1142/s0252959903000426.
Texto completo da fonteOran, Elaine S., e Vadim N. Gamezo. "Origins of the deflagration-to-detonation transition in gas-phase combustion". Combustion and Flame 148, n.º 1-2 (janeiro de 2007): 4–47. http://dx.doi.org/10.1016/j.combustflame.2006.07.010.
Texto completo da fonteKrivosheyev, P. N., A. O. Novitski e O. G. Penyazkov. "Evolution of the Reaction Front Shape and Structure on Flame Acceleration and Deflagration-to-Detonation Transition". Russian Journal of Physical Chemistry B 16, n.º 4 (agosto de 2022): 661–69. http://dx.doi.org/10.1134/s1990793122040248.
Texto completo da fonteСмирнов, Н. Н., В. В. Тюренкова, Л. И. Стамов e Дж. Хадем. "Simulation of Polydisperse Gas-Droplet Mixture Flows with Chemical Transformations". Успехи кибернетики / Russian Journal of Cybernetics, n.º 2 (30 de junho de 2021): 29–41. http://dx.doi.org/10.51790/2712-9942-2021-2-2-3.
Texto completo da fonteStarikovskiy, Andrey, Nickolay Aleksandrov e Aleksandr Rakitin. "Plasma-assisted ignition and deflagration-to-detonation transition". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 370, n.º 1960 (13 de fevereiro de 2012): 740–73. http://dx.doi.org/10.1098/rsta.2011.0344.
Texto completo da fonteBolodyan, I. A., L. P. Vogman, V. P. Nekrasov e A. V. Mordvinova. "Experimental Research of the Combustion of Spherical Hydrogen-Air Mixtures in an Open Space under the Influence of Slowing and Accelerating Factors". Occupational Safety in Industry, n.º 1 (janeiro de 2022): 33–38. http://dx.doi.org/10.24000/0409-2961-2022-1-33-38.
Texto completo da fonteHORVATH, J. E. "PROPAGATING COMBUSTION MODES OF THE NEUTRON-TO-STRANGE-MATTER CONVERSION: THE ROLE OF INSTABILITIES". International Journal of Modern Physics D 19, n.º 05 (maio de 2010): 523–38. http://dx.doi.org/10.1142/s0218271810016531.
Texto completo da fonteDOGRA, Bharat Ankur, Mehakveer SINGH, Tejinder Kumar JINDAL e Subhash CHANDER. "Technological advancements in Pulse Detonation Engine Technology in the recent past: A Characterized Report". INCAS BULLETIN 11, n.º 4 (8 de dezembro de 2019): 81–92. http://dx.doi.org/10.13111/2066-8201.2019.11.4.8.
Texto completo da fonteFunk, David J., W. Dale Breshears, Gary W. Laabs e Blaine W. Asay. "Laser Diode Reflectometry and Infrared Emission Measurements of Permeating Gases at High Driving Pressures and Temperatures". Applied Spectroscopy 50, n.º 2 (fevereiro de 1996): 257–62. http://dx.doi.org/10.1366/0003702963906555.
Texto completo da fonteFrolov, S. M., V. S. Aksenov, K. A. Avdeev, A. A. Borisov, V. S. Ivanov, A. S. Koval’, S. N. Medvedev, V. A. Smetanyuk, F. S. Frolov e I. O. Shamshin. "Cyclic deflagration-to-detonation transition in the flow-type combustion chamber of a pulse-detonation burner". Russian Journal of Physical Chemistry B 7, n.º 2 (março de 2013): 137–41. http://dx.doi.org/10.1134/s1990793113020024.
Texto completo da fonteOrnano, Francesco, James Braun, Bayindir Huseyin Saracoglu e Guillermo Paniagua. "Multi-stage nozzle-shape optimization for pulsed hydrogen–air detonation combustor". Advances in Mechanical Engineering 9, n.º 2 (fevereiro de 2017): 168781401769095. http://dx.doi.org/10.1177/1687814017690955.
Texto completo da fonteStarikovskii, A. Yu, N. B. Anikin, I. N. Kosarev, E. I. Mintoussov, S. M. Starikovskaia e V. P. Zhukov. "Plasma-assisted combustion". Pure and Applied Chemistry 78, n.º 6 (1 de janeiro de 2006): 1265–98. http://dx.doi.org/10.1351/pac200678061265.
Texto completo da fonteTripathi, Saurabh, Krishna Murari Pandey e Pitambar Randive. "Computational Study on Effect of Obstacles in Pulse Detonation Engine". International Journal of Engineering & Technology 7, n.º 4.5 (22 de setembro de 2018): 113. http://dx.doi.org/10.14419/ijet.v7i4.5.20025.
Texto completo da fonteKiverin, A. D., A. V. Semikolenov e Yakovenko. "Non-stationary combustion regimes inside closed volumes, deflagration-to-detonation transition and dynamic loads". Vestnik Ob"edinennogo instituta vysokikh temperatur 1, n.º 1 (2018): 82–87. http://dx.doi.org/10.33849/2018118.
Texto completo da fonteSUN, MEINA. "ENTROPY SOLUTIONS OF A CHAPMAN–JOUGUET COMBUSTION MODEL". Mathematical Models and Methods in Applied Sciences 22, n.º 09 (31 de julho de 2012): 1250018. http://dx.doi.org/10.1142/s0218202512500182.
Texto completo da fonteWheeler, J. Craig. "Astrophysical explosions: from solar flares to cosmic gamma-ray bursts". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 370, n.º 1960 (13 de fevereiro de 2012): 774–99. http://dx.doi.org/10.1098/rsta.2011.0351.
Texto completo da fonteGoldin, Andrei Yu, Shamil M. Magomedov, Luiz M. Faria e Aslan R. Kasimov. "Study of a qualitative model for combustion waves: Flames, detonations, and deflagration-to-detonation transition". Computers & Fluids 273 (abril de 2024): 106213. http://dx.doi.org/10.1016/j.compfluid.2024.106213.
Texto completo da fonteVolkov, Victor E. "Mathematical and information models of decision support systems for explosion protection". Applied Aspects of Information Technology 5, n.º 3 (25 de outubro de 2022): 179–95. http://dx.doi.org/10.15276/aait.05.2022.12.
Texto completo da fonteKiverin, A. D., A. E. Smygalina e I. S. Yakovenko. "The Classification of the Scenarios of Fast Combustion Wave Development and Deflagration-to-Detonation Transition in Channels". Russian Journal of Physical Chemistry B 14, n.º 4 (julho de 2020): 607–13. http://dx.doi.org/10.1134/s1990793120040168.
Texto completo da fonteZhou, Fei, Ning Liu e Xiangyan Zhang. "Numerical study of hydrogen–oxygen flame acceleration and deflagration to detonation transition in combustion light gas gun". International Journal of Hydrogen Energy 43, n.º 10 (março de 2018): 5405–14. http://dx.doi.org/10.1016/j.ijhydene.2017.11.134.
Texto completo da fonteKrishnamoorthy, Gautham, e Lucky Mulenga. "Impact of Radiative Losses on Flame Acceleration and Deflagration to Detonation Transition of Lean Hydrogen-Air Mixtures in a Macro-Channel with Obstacles". Fluids 3, n.º 4 (8 de dezembro de 2018): 104. http://dx.doi.org/10.3390/fluids3040104.
Texto completo da fonteFrolov, Sergey M., Igor O. Shamshin, Maxim V. Kazachenko, Viktor S. Aksenov, Igor V. Bilera, Vladislav S. Ivanov e Valerii I. Zvegintsev. "Polyethylene Pyrolysis Products: Their Detonability in Air and Applicability to Solid-Fuel Detonation Ramjets". Energies 14, n.º 4 (4 de fevereiro de 2021): 820. http://dx.doi.org/10.3390/en14040820.
Texto completo da fonteZhang, Jiaqing, Xianli Zhu, Yi Guo, Yue Teng, Min Liu, Quan Li, Qiao Wang e Changjian Wang. "Numerical Study of Homogenous/Inhomogeneous Hydrogen–Air Explosion in a Long Closed Channel". Fire 7, n.º 11 (18 de novembro de 2024): 418. http://dx.doi.org/10.3390/fire7110418.
Texto completo da fonteYakush, Sergey, Oleg Semenov e Maxim Alexeev. "Premixed Propane–Air Flame Propagation in a Narrow Channel with Obstacles". Energies 16, n.º 3 (3 de fevereiro de 2023): 1516. http://dx.doi.org/10.3390/en16031516.
Texto completo da fonteМихальченко, Елена Викторовна, Валерий Федорович Никитин, Любен Иванович Стамов e Юрий Григорьевич Филиппов. "Modelling of a rotating detonation engine combustion chamber". Вычислительные технологии, n.º 1(26) (2 de abril de 2021): 33–49. http://dx.doi.org/10.25743/ict.2021.26.1.003.
Texto completo da fonteLi, Zhijie, Changhui Zhai, Xiaoxiao Zeng, Kui Shi, Xinbo Wu, Tianwei Ma e Yunliang Qi. "Review of Pre-Ignition Research in Methanol Engines". Energies 18, n.º 1 (31 de dezembro de 2024): 133. https://doi.org/10.3390/en18010133.
Texto completo da fonteGe, Haiwen, Ahmad Hadi Bakir e Peng Zhao. "Knock Mitigation and Power Enhancement of Hydrogen Spark-Ignition Engine through Ammonia Blending". Machines 11, n.º 6 (16 de junho de 2023): 651. http://dx.doi.org/10.3390/machines11060651.
Texto completo da fonteChow, Wan Ki, Tsz Kit Yue, Yiu Wah Ng, Zheming Gao e Ye Gao. "Clean Hydrocarbon Refrigerant Explosion Hazards". Journal of Civil Engineering and Construction 11, n.º 2 (15 de maio de 2022): 104–11. http://dx.doi.org/10.32732/jcec.2022.11.2.104.
Texto completo da fonteHuang, Diyun, Jiayong Wang, Minshuo Shi, Puze Yang e Binyang Wu. "Combustion Mechanism of Gasoline Detonation Tube and Coupling of Engine Turbocharging Cycle". Energies 17, n.º 11 (22 de maio de 2024): 2466. http://dx.doi.org/10.3390/en17112466.
Texto completo da fonteDebnath, Pinku, e Krishna Murari Pandey. "Numerical analysis on detonation wave and combustion efficiency of PDC with U-shape combustor". Journal of Thermal Science and Engineering Applications, 7 de junho de 2023, 1–23. http://dx.doi.org/10.1115/1.4062702.
Texto completo da fonteHuang, Zhiwei, e Huangwei Zhang. "Ignition and deflagration-to-detonation transition in ethylene/air mixtures behind a reflected shock". Physics of Fluids, 18 de julho de 2022. http://dx.doi.org/10.1063/5.0103013.
Texto completo da fonte"Thermally initiated detonation through deflagration to detonation transition". Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences 435, n.º 1895 (9 de dezembro de 1991): 459–82. http://dx.doi.org/10.1098/rspa.1991.0156.
Texto completo da fonteYang, Rui, Qibin Zhang, Zaijie Feng, Yujia Yang, Minghao Zhao e Wei Fan. "Characteristics of multi-cycle two-phase pulse detonation waves traveling near the lean combustion limit". Physics of Fluids 35, n.º 11 (1 de novembro de 2023). http://dx.doi.org/10.1063/5.0165922.
Texto completo da fonteZhao, Minghao, Hua Qiu, Yong Liang, Cha Xiong, Xinlu He e Huangwei Chen. "Numerical simulation study of hydrogen/air flame propagation and detonation characteristics in an annular cross section of gas turbine combustion chamber". Physics of Fluids 36, n.º 12 (1 de dezembro de 2024). https://doi.org/10.1063/5.0233505.
Texto completo da fonteSulaiman, S. Z., R. M. Kasmani, A. Mustafa e R. Mohsin. "Effect of Obstacle on Deflagration to Detonation Transition (DDT) in Closed Pipe or Channel–An Overview". Jurnal Teknologi 66, n.º 1 (19 de dezembro de 2013). http://dx.doi.org/10.11113/jt.v66.1326.
Texto completo da fonte