Literatura científica selecionada sobre o tema "Computational nerve model"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Computational nerve model".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Computational nerve model"
Helmers, S. L., J. Begnaud, A. Cowley, H. M. Corwin, J. C. Edwards, D. L. Holder, H. Kostov et al. "Application of a computational model of vagus nerve stimulation". Acta Neurologica Scandinavica 126, n.º 5 (24 de fevereiro de 2012): 336–43. http://dx.doi.org/10.1111/j.1600-0404.2012.01656.x.
Texto completo da fonteMichalkova, A., e J. Leszczynski. "Interactions of nerve agents with model surfaces: Computational approach". Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 28, n.º 4 (julho de 2010): 1010–17. http://dx.doi.org/10.1116/1.3271148.
Texto completo da fonteLubba, Carl H., Yann Le Guen, Sarah Jarvis, Nick S. Jones, Simon C. Cork, Amir Eftekhar e Simon R. Schultz. "PyPNS: Multiscale Simulation of a Peripheral Nerve in Python". Neuroinformatics 17, n.º 1 (15 de junho de 2018): 63–81. http://dx.doi.org/10.1007/s12021-018-9383-z.
Texto completo da fonteBeck, Jeremy M., e Christopher M. Hadad. "Hydrolysis of nerve agents by model nucleophiles: A computational study". Chemico-Biological Interactions 175, n.º 1-3 (setembro de 2008): 200–203. http://dx.doi.org/10.1016/j.cbi.2008.04.026.
Texto completo da fonteGiannessi, Elisabetta, Maria Rita Stornelli e Pier Nicola Sergi. "A unified approach to model peripheral nerves across different animal species". PeerJ 5 (10 de novembro de 2017): e4005. http://dx.doi.org/10.7717/peerj.4005.
Texto completo da fonteSharma, G. C., e Madhu Jain. "A computational solution of mathematical model for oxygen transport in peripheral nerve". Computers in Biology and Medicine 34, n.º 7 (outubro de 2004): 633–45. http://dx.doi.org/10.1016/s0010-4825(03)00043-x.
Texto completo da fonteYang, Changhui, Ruixia Yang, Tingting Xu e Yinxia Li. "Computational model of enterprise cooperative technology innovation risk based on nerve network". Journal of Algorithms & Computational Technology 12, n.º 2 (22 de março de 2018): 177–84. http://dx.doi.org/10.1177/1748301818762527.
Texto completo da fonteSachs, Murray B., Raimond L. Winslow e Bernd H. A. Sokolowski. "A computational model for rate-level functions from cat auditory-nerve fibers". Hearing Research 41, n.º 1 (agosto de 1989): 61–69. http://dx.doi.org/10.1016/0378-5955(89)90179-2.
Texto completo da fonteBacqué-Cazenave, Julien, Bryce Chung, David W. Cofer, Daniel Cattaert e Donald H. Edwards. "The effect of sensory feedback on crayfish posture and locomotion: II. Neuromechanical simulation of closing the loop". Journal of Neurophysiology 113, n.º 6 (15 de março de 2015): 1772–83. http://dx.doi.org/10.1152/jn.00870.2014.
Texto completo da fonteGe, Yimeng, Shuan Ye, Kaihua Zhu, Tianruo Guo, Diansan Su, Dingguo Zhang, Yao Chen, Xinyu Chai e Xiaohong Sui. "Mediating different-diameter Aβ nerve fibers using a biomimetic 3D TENS computational model". Journal of Neuroscience Methods 346 (dezembro de 2020): 108891. http://dx.doi.org/10.1016/j.jneumeth.2020.108891.
Texto completo da fonteTeses / dissertações sobre o assunto "Computational nerve model"
Christopher, Mark Allen. "Computational methods to model disease and genetic effects on optic nerve head structure". Diss., University of Iowa, 2015. https://ir.uiowa.edu/etd/1959.
Texto completo da fonteBrill, Natalie Amber. "Optimization of High Density Nerve Cuff Stimulation in Upper Extremity Nerves". Case Western Reserve University School of Graduate Studies / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=case1418147191.
Texto completo da fonteKieselbach, Rebecca. "A numerically stable model for simulating high frequency conduction block in nerve fiber". Thesis, Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/41233.
Texto completo da fontePeterson, Erik J. "INFRARED NEURAL STIMULATION AND FUNCTIONALRECRUITMENT OF THE PERIPHERAL NERVE". Case Western Reserve University School of Graduate Studies / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=case1363640552.
Texto completo da fonteMorse, Robert. "Studies of temporal coding for analogue cochlear implants using animal and computational models : benefits of noise". Thesis, Keele University, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.242448.
Texto completo da fonteDenniss, Jonathan, A. M. McKendrick e A. Turpin. "An Anatomically Customizable Computational Model Relating the Visual Field to the Optic Nerve Head in Individual Eyes". 2012. http://hdl.handle.net/10454/16269.
Texto completo da fonteTo present a computational model mapping visual field (VF) locations to optic nerve head (ONH) sectors accounting for individual ocular anatomy, and to describe the effects of anatomical variability on maps produced. A previous model that related retinal locations to ONH sectors was adapted to model eyes with varying axial length, ONH position and ONH dimensions. Maps (n = 11,550) relating VF locations (24-2 pattern, n = 52 non–blind-spot locations) to 1° ONH sectors were generated for a range of clinically plausible anatomical parameters. Infrequently mapped ONH sectors (5%) were discarded for all locations. The influence of anatomical variables on the maps was explored by multiple linear regression. Across all anatomical variants, for individual VF locations (24-2), total number of mapped 1° ONH sectors ranged from 12 to 90. Forty-one locations varied more than 30°. In five nasal-step locations, mapped ONH sectors were bimodally distributed, mapping to vertically opposite ONH sectors depending on vertical ONH position. Mapped ONH sectors were significantly influenced (P < 0.0002) by axial length, ONH position, and ONH dimensions for 39, 52, and 30 VF locations, respectively. On average across all VF locations, vertical ONH position explained the most variance in mapped ONH sector, followed by horizontal ONH position, axial length, and ONH dimensions. Relations between ONH sectors and many VF locations are strongly anatomy-dependent. Our model may be used to produce customized maps from VF locations to the ONH in individual eyes where some simple biometric parameters are known.
ustralian Research Council Linkage Project LP100100250 (with Heidelberg Engineering GmbH, Germany); Australian Research Council Future Fellowship FT0990930 (AMM); Australian Research Council Future Fellowship FT0991326 (AT)
Denniss, Jonathan, A. Turpin, F. Tanabe, C. Matsumoto e A. M. McKendrick. "Structure–Function Mapping: Variability and Conviction in Tracing Retinal Nerve Fiber Bundles and Comparison to a Computational Model". 2014. http://hdl.handle.net/10454/11088.
Texto completo da fontePurpose: We evaluated variability and conviction in tracing paths of retinal nerve fiber bundles (RNFBs) in retinal images, and compared traced paths to a computational model that produces anatomically-customized structure–function maps. Methods: Ten retinal images were overlaid with 24-2 visual field locations. Eight clinicians and 6 naïve observers traced RNFBs from each location to the optic nerve head (ONH), recording their best estimate and certain range of insertion. Three clinicians and 2 naïve observers traced RNFBs in 3 images, 3 times, 7 to 19 days apart. The model predicted 10° ONH sectors relating to each location. Variability and repeatability in best estimates, certain range width, and differences between best estimates and model-predictions were evaluated. Results: Median between-observer variability in best estimates was 27° (interquartile range [IQR] 20°–38°) for clinicians and 33° (IQR 22°–50°) for naïve observers. Median certain range width was 30° (IQR 14°–45°) for clinicians and 75° (IQR 45°–180°) for naïve observers. Median repeatability was 10° (IQR 5°–20°) for clinicians and 15° (IQR 10°–29°) for naïve observers. All measures were worse further from the ONH. Systematic differences between model predictions and best estimates were negligible; median absolute differences were 17° (IQR 9°–30°) for clinicians and 20° (IQR 10°–36°) for naïve observers. Larger departures from the model coincided with greater variability in tracing. Conclusions: Concordance between the model and RNFB tracing was good, and greatest where tracing variability was lowest. When RNFB tracing is used for structure–function mapping, variability should be considered.
Smit, Jacoba Elizabeth. "Modelled response of the electrically stimulated human auditory nerve fibre". Thesis, 2008. http://upetd.up.ac.za/thesis/available/etd-09182008-144232/.
Texto completo da fonte"Biomechanical properties of the normal and early glaucomatous optic nerve head: An experimental and computational study using the monkey model". Tulane University, 2002.
Encontre o texto completo da fonteacase@tulane.edu
Hsu, Wei-Chei, e 許偉傑. "Modeling Stochastic Auditory Nerves Behavior Based on Computational Neuroscience Model Using Artificial Neural Networks". Thesis, 2006. http://ndltd.ncl.edu.tw/handle/56857822916739155478.
Texto completo da fonte義守大學
電機工程學系碩士班
94
Neural response to electrical stimulation can be modeled by Generalized Schwarz Eikhof and Frijns (GSEF) equations. They are deterministic and computational intensive. On the other hand, real neural response to electrical stimulation is stochastic. This makes GSEF model unattractive for realistic neural engineering application. In order to model the stochastic behavior of an electrically stimulated nerve, an artificial neural network (ANN) is used to model the GSEF with stochastic response. Once the ANN is trained, the neural response is readily available without the computation delay similar to those of the GSEF models.
Livros sobre o assunto "Computational nerve model"
Trappenberg, Thomas P. Fundamentals of computational neuroscience. 2a ed. Oxford: Oxford University Press, 2010.
Encontre o texto completo da fonteTrappenberg, Thomas P. Fundamentals of computational neuroscience. 2a ed. Oxford: Oxford University Press, 2010.
Encontre o texto completo da fonteFundamentals of computational neuroscience. 2a ed. Oxford: Oxford University Press, 2010.
Encontre o texto completo da fonteHippocampal microcircuits: A computational modeler's resource book. New York: Springer, 2010.
Encontre o texto completo da fonteCox, Steven J. (Steven James), 1960- e ScienceDirect (Online service), eds. Mathematics for neuroscientists. Amsterdam: Elsevier Academic Press, 2010.
Encontre o texto completo da fonteBrain dynamics: Synchronization and activity patterns in pulse-coupled neural nets with delays and noise. Berlin: Springer, 2002.
Encontre o texto completo da fonteKoch, Christof. Biophysics of Computation. Oxford University Press, 1998. http://dx.doi.org/10.1093/oso/9780195104912.001.0001.
Texto completo da fonteTrappenberg, Thomas. Fundamentals of Computational Neuroscience. Oxford University Press, USA, 2002.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Computational nerve model"
Schiefer, Matthew. "Peripheral Nerve Models". In Encyclopedia of Computational Neuroscience, 1–7. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4614-7320-6_213-3.
Texto completo da fonteSchiefer, Matthew. "Peripheral Nerve Models". In Encyclopedia of Computational Neuroscience, 2302–7. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4614-6675-8_213.
Texto completo da fonteMedina, Leonel E., e Warren M. Grill. "Mammalian Motor Nerve Fibers, Models of". In Encyclopedia of Computational Neuroscience, 1–4. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4614-7320-6_369-2.
Texto completo da fonteMedina, Leonel E., e Warren M. Grill. "Mammalian Motor Nerve Fibers, Models of". In Encyclopedia of Computational Neuroscience, 1645–48. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4614-6675-8_369.
Texto completo da fonteMeddis, Ray, e Enrique A. Lopez-Poveda. "Auditory Periphery: From Pinna to Auditory Nerve". In Computational Models of the Auditory System, 7–38. Boston, MA: Springer US, 2010. http://dx.doi.org/10.1007/978-1-4419-5934-8_2.
Texto completo da fonteWang, Jing, Michael I. Miller e Andrew T. Ogielski. "A Stochastic Model Of Synaptic Transmission and Auditory Nerve Discharge (Part I)". In Computation in Neurons and Neural Systems, 147–52. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2714-5_24.
Texto completo da fonteWang, Jing, Michael I. Miller e Andrew T. Ogielski. "A Stochastic Model Of Synaptic Transmission and Auditory Nerve Discharge (Part II)". In Computation in Neurons and Neural Systems, 153–58. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2714-5_25.
Texto completo da fonte"Nerve Fiber Model(s)". In Encyclopedia of Computational Neuroscience, 1849. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4614-6675-8_100379.
Texto completo da fontePenrose, Roger, e Martin Gardner. "Real Brains and Model Brains". In The Emperor's New Mind. Oxford University Press, 1989. http://dx.doi.org/10.1093/oso/9780198519737.003.0017.
Texto completo da fonte"Models and Methods for Investigation of the Human Motor Nerve Fibre". In Computational Neuroscience, 18–32. CRC Press, 2013. http://dx.doi.org/10.1201/b14589-3.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Computational nerve model"
Fritz, Nicholas, Daniel Gulick e Jennifer M. Blain Christen. "Computational Model of Optogenetic Stimulation in a Peripheral Nerve". In 2018 IEEE Life Sciences Conference (LSC). IEEE, 2018. http://dx.doi.org/10.1109/lsc.2018.8572187.
Texto completo da fonteLin, Qihang, Mohit N. Shivdasani, David Tsai, Yao-Chuan Chang, Naveen Jayaprakash, Stavros Zanos, Nigel H. Lovell, Socrates Dokos e Tianruo Guo. "A Computational Model of Functionally-distinct Cervical Vagus Nerve Fibers". In 2020 42nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) in conjunction with the 43rd Annual Conference of the Canadian Medical and Biological Engineering Society. IEEE, 2020. http://dx.doi.org/10.1109/embc44109.2020.9175855.
Texto completo da fonteBaruah, Satyabrat Malla Bujar, Plabita Gogoi e Soumik Roy. "From Cable Equation to Active and Passive Nerve Membrane Model". In 2019 Second International Conference on Advanced Computational and Communication Paradigms (ICACCP). IEEE, 2019. http://dx.doi.org/10.1109/icaccp.2019.8883011.
Texto completo da fonteCiotti, Federico, Giacomo Valle, Alessandra Pedrocchi e Stanisa Raspopovic. "A Computational Model of the Pudendal Nerve for the Bioelectronic Treatment of Sexual Dysfunctions". In 2021 10th International IEEE/EMBS Conference on Neural Engineering (NER). IEEE, 2021. http://dx.doi.org/10.1109/ner49283.2021.9441309.
Texto completo da fonteDeka, Rashmi, e Jiten Ch Dutta. "Parameter Extraction for Neuron Model Simulation of Action Potential in Earthworm Giant Nerve Fiber". In 2015 IEEE International Conference on Computational Intelligence & Communication Technology (CICT). IEEE, 2015. http://dx.doi.org/10.1109/cict.2015.57.
Texto completo da fonteWilliams, Megan, Julie Barkmeier-Kraemer, Urs Utzinger e Jonathan Vande Geest. "Biomechanical and Microstructural Response of Recurrent Laryngeal Nerve in Pigs". In ASME 2013 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/sbc2013-14618.
Texto completo da fonteWaldman, Lewis, Crystal Cunanan, Sanjay Asrani, Roy Kerckhoffs e Andrew McCulloch. "Computational Mechanics of the Sclera and Optic Nerve Head (ONH): Effects of ONH Size and Pressure Range". In ASME 2008 3rd Frontiers in Biomedical Devices Conference. ASMEDC, 2008. http://dx.doi.org/10.1115/biomed2008-38051.
Texto completo da fonteTong, Junfei, e Linxia Gu. "The Influence of Primary Blast Wave on the Posterior Part of the Eyeball". In ASME 2018 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/imece2018-88113.
Texto completo da fonteKavan, Loabat S., Abhijeet Wadkar e Samuel F. Asokanthan. "Computational Study of Onset Dynamics in Neuron-Spiking With Threshold Adaptation". In ASME 2018 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/imece2018-86689.
Texto completo da fonteTong, Junfei, Deepta Ghate, Sachin Kedar e Linxia Gu. "Image-Based Modeling of Optic Nerve Head Mechanics Following Lumbar Puncture". In 2017 Design of Medical Devices Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/dmd2017-3531.
Texto completo da fonte