Artigos de revistas sobre o tema "Computational nerve model"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Computational nerve model".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Helmers, S. L., J. Begnaud, A. Cowley, H. M. Corwin, J. C. Edwards, D. L. Holder, H. Kostov et al. "Application of a computational model of vagus nerve stimulation". Acta Neurologica Scandinavica 126, n.º 5 (24 de fevereiro de 2012): 336–43. http://dx.doi.org/10.1111/j.1600-0404.2012.01656.x.
Texto completo da fonteMichalkova, A., e J. Leszczynski. "Interactions of nerve agents with model surfaces: Computational approach". Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 28, n.º 4 (julho de 2010): 1010–17. http://dx.doi.org/10.1116/1.3271148.
Texto completo da fonteLubba, Carl H., Yann Le Guen, Sarah Jarvis, Nick S. Jones, Simon C. Cork, Amir Eftekhar e Simon R. Schultz. "PyPNS: Multiscale Simulation of a Peripheral Nerve in Python". Neuroinformatics 17, n.º 1 (15 de junho de 2018): 63–81. http://dx.doi.org/10.1007/s12021-018-9383-z.
Texto completo da fonteBeck, Jeremy M., e Christopher M. Hadad. "Hydrolysis of nerve agents by model nucleophiles: A computational study". Chemico-Biological Interactions 175, n.º 1-3 (setembro de 2008): 200–203. http://dx.doi.org/10.1016/j.cbi.2008.04.026.
Texto completo da fonteGiannessi, Elisabetta, Maria Rita Stornelli e Pier Nicola Sergi. "A unified approach to model peripheral nerves across different animal species". PeerJ 5 (10 de novembro de 2017): e4005. http://dx.doi.org/10.7717/peerj.4005.
Texto completo da fonteSharma, G. C., e Madhu Jain. "A computational solution of mathematical model for oxygen transport in peripheral nerve". Computers in Biology and Medicine 34, n.º 7 (outubro de 2004): 633–45. http://dx.doi.org/10.1016/s0010-4825(03)00043-x.
Texto completo da fonteYang, Changhui, Ruixia Yang, Tingting Xu e Yinxia Li. "Computational model of enterprise cooperative technology innovation risk based on nerve network". Journal of Algorithms & Computational Technology 12, n.º 2 (22 de março de 2018): 177–84. http://dx.doi.org/10.1177/1748301818762527.
Texto completo da fonteSachs, Murray B., Raimond L. Winslow e Bernd H. A. Sokolowski. "A computational model for rate-level functions from cat auditory-nerve fibers". Hearing Research 41, n.º 1 (agosto de 1989): 61–69. http://dx.doi.org/10.1016/0378-5955(89)90179-2.
Texto completo da fonteBacqué-Cazenave, Julien, Bryce Chung, David W. Cofer, Daniel Cattaert e Donald H. Edwards. "The effect of sensory feedback on crayfish posture and locomotion: II. Neuromechanical simulation of closing the loop". Journal of Neurophysiology 113, n.º 6 (15 de março de 2015): 1772–83. http://dx.doi.org/10.1152/jn.00870.2014.
Texto completo da fonteGe, Yimeng, Shuan Ye, Kaihua Zhu, Tianruo Guo, Diansan Su, Dingguo Zhang, Yao Chen, Xinyu Chai e Xiaohong Sui. "Mediating different-diameter Aβ nerve fibers using a biomimetic 3D TENS computational model". Journal of Neuroscience Methods 346 (dezembro de 2020): 108891. http://dx.doi.org/10.1016/j.jneumeth.2020.108891.
Texto completo da fonteMourdoukoutas, Antonios P., Dennis Q. Truong, Devin K. Adair, Bruce J. Simon e Marom Bikson. "High-Resolution Multi-Scale Computational Model for Non-Invasive Cervical Vagus Nerve Stimulation". Neuromodulation: Technology at the Neural Interface 21, n.º 3 (27 de outubro de 2017): 261–68. http://dx.doi.org/10.1111/ner.12706.
Texto completo da fonteAhmed, Sameed, e Anita T. Layton. "Sex-specific computational models for blood pressure regulation in the rat". American Journal of Physiology-Renal Physiology 318, n.º 4 (1 de abril de 2020): F888—F900. http://dx.doi.org/10.1152/ajprenal.00376.2019.
Texto completo da fonteLima, Pedro M., Neville J. Ford e Patricia M. Lumb. "Computational methods for a mathematical model of propagation of nerve impulses in myelinated axons". Applied Numerical Mathematics 85 (novembro de 2014): 38–53. http://dx.doi.org/10.1016/j.apnum.2014.06.004.
Texto completo da fonteHeinz, Michael G., H. Steven Colburn e Laurel H. Carney. "Evaluating Auditory Performance Limits: I. One-Parameter Discrimination Using a Computational Model for the Auditory Nerve". Neural Computation 13, n.º 10 (1 de outubro de 2001): 2273–316. http://dx.doi.org/10.1162/089976601750541804.
Texto completo da fonteJohnson, Matthew D., Yazan M. Dweiri, Jason Cornelius, Kingman P. Strohl, Armin Steffen, Maria Suurna, Ryan J. Soose et al. "Model-based analysis of implanted hypoglossal nerve stimulation for the treatment of obstructive sleep apnea". Sleep 44, Supplement_1 (27 de fevereiro de 2021): S11—S19. http://dx.doi.org/10.1093/sleep/zsaa269.
Texto completo da fonteNovikov, Andrei, Ekaterina Blinova, Elena Semeleva, Karina Karakhanjan, Mikhail Mironov, Dmirty Blinov, Yuliya Krainova, Dmitry Pakhomov, Olga Vasilkina e Elena Samishina. "On local anesthetic action of some dimethylacetamide compounds". Research Results in Pharmacology 4, n.º 4 (2 de dezembro de 2018): 1–8. http://dx.doi.org/10.3897/rrpharmacology.4.31440.
Texto completo da fonteSzmurlo, Robert, Jacek Starzynski, Stanislaw Wincenciak e Andrzej Rysz. "Numerical model of vagus nerve electrical stimulation". COMPEL - The international journal for computation and mathematics in electrical and electronic engineering 28, n.º 1 (2 de janeiro de 2009): 211–20. http://dx.doi.org/10.1108/03321640910919002.
Texto completo da fonteMandal, Debasish, Kaushik Sen e Abhijit K. Das. "Aminolysis of a Model Nerve Agent: A Computational Reaction Mechanism Study ofO,S-Dimethyl Methylphosphonothiolate". Journal of Physical Chemistry A 116, n.º 32 (8 de agosto de 2012): 8382–96. http://dx.doi.org/10.1021/jp305994g.
Texto completo da fonteKang, Soojin, Tanmoy Chwodhury, Il Joon Moon, Sung Hwa Hong, Hyejin Yang, Jong Ho Won e Jihwan Woo. "Effects of Electrode Position on Spatiotemporal Auditory Nerve Fiber Responses: A 3D Computational Model Study". Computational and Mathematical Methods in Medicine 2015 (2015): 1–13. http://dx.doi.org/10.1155/2015/934382.
Texto completo da fonteYe, Shuan, Kaihua Zhu, Peng Li e Xiaohong Sui. "Neural Firing Mechanism Underlying Two-Electrode Discrimination by 3D Transcutaneous Electrical Nerve Stimulation Computational Model". Journal of Shanghai Jiaotong University (Science) 24, n.º 6 (dezembro de 2019): 716–22. http://dx.doi.org/10.1007/s12204-019-2134-y.
Texto completo da fonteAmoddeo, Antonino. "Mathematical Model and Numerical Simulation for Electric Field Induced Cancer Cell Migration". Mathematical and Computational Applications 26, n.º 1 (31 de dezembro de 2020): 4. http://dx.doi.org/10.3390/mca26010004.
Texto completo da fonteCosner, Chris. "Existence of Global Solutions to a Model of a Myelinated Nerve Axon". SIAM Journal on Mathematical Analysis 18, n.º 3 (maio de 1987): 703–10. http://dx.doi.org/10.1137/0518053.
Texto completo da fonteRaspopovic, S., M. Capogrosso e S. Micera. "A Computational Model for the Stimulation of Rat Sciatic Nerve Using a Transverse Intrafascicular Multichannel Electrode". IEEE Transactions on Neural Systems and Rehabilitation Engineering 19, n.º 4 (agosto de 2011): 333–44. http://dx.doi.org/10.1109/tnsre.2011.2151878.
Texto completo da fonteDenniss, Jonathan, Andrew Turpin, Fumi Tanabe, Chota Matsumoto e Allison M. McKendrick. "Structure–Function Mapping: Variability andConvictionin Tracing Retinal Nerve Fiber Bundles and Comparison to a Computational Model". Investigative Opthalmology & Visual Science 55, n.º 2 (4 de fevereiro de 2014): 728. http://dx.doi.org/10.1167/iovs.13-13142.
Texto completo da fonteChung, Bryce, Julien Bacqué-Cazenave, David W. Cofer, Daniel Cattaert e Donald H. Edwards. "The effect of sensory feedback on crayfish posture and locomotion: I. Experimental analysis of closing the loop". Journal of Neurophysiology 113, n.º 6 (15 de março de 2015): 1763–71. http://dx.doi.org/10.1152/jn.00248.2014.
Texto completo da fonteYavuz, Mehmet, e Asıf Yokus. "Analytical and numerical approaches to nerve impulse model of fractional‐order". Numerical Methods for Partial Differential Equations 36, n.º 6 (2 de junho de 2020): 1348–68. http://dx.doi.org/10.1002/num.22476.
Texto completo da fonteThomas, E. A., H. Sjövall e J. C. Bornstein. "Computational model of the migrating motor complex of the small intestine". American Journal of Physiology-Gastrointestinal and Liver Physiology 286, n.º 4 (abril de 2004): G564—G572. http://dx.doi.org/10.1152/ajpgi.00369.2003.
Texto completo da fonteWinkelstein, Beth A., e Joyce A. DeLeo. "Mechanical Thresholds for Initiation and Persistence of Pain Following Nerve Root Injury: Mechanical and Chemical Contributions at Injury". Journal of Biomechanical Engineering 126, n.º 2 (1 de abril de 2004): 258–63. http://dx.doi.org/10.1115/1.1695571.
Texto completo da fonteHagen, David R., Jacob K. White e Bruce Tidor. "Convergence in parameters and predictions using computational experimental design". Interface Focus 3, n.º 4 (6 de agosto de 2013): 20130008. http://dx.doi.org/10.1098/rsfs.2013.0008.
Texto completo da fonteRothman, J. S., E. D. Young e P. B. Manis. "Convergence of auditory nerve fibers onto bushy cells in the ventral cochlear nucleus: implications of a computational model". Journal of Neurophysiology 70, n.º 6 (1 de dezembro de 1993): 2562–83. http://dx.doi.org/10.1152/jn.1993.70.6.2562.
Texto completo da fonteAdams, Robert D., Rebecca K. Willits e Amy B. Harkins. "Computational modeling of neurons: intensity-duration relationship of extracellular electrical stimulation for changes in intracellular calcium". Journal of Neurophysiology 115, n.º 1 (1 de janeiro de 2016): 602–16. http://dx.doi.org/10.1152/jn.00571.2015.
Texto completo da fonteLaTorre, Antonio, Man Ting Kwong, Julián A. García-Grajales, Riyi Shi, Antoine Jérusalem e José-María Peña. "Model calibration using a parallel differential evolution algorithm in computational neuroscience: Simulation of stretch induced nerve deficit". Journal of Computational Science 39 (janeiro de 2020): 101053. http://dx.doi.org/10.1016/j.jocs.2019.101053.
Texto completo da fonteDenniss, Jonathan, Allison M. McKendrick e Andrew Turpin. "An Anatomically Customizable Computational Model Relating the Visual Field to the Optic Nerve Head in Individual Eyes". Investigative Opthalmology & Visual Science 53, n.º 11 (9 de outubro de 2012): 6981. http://dx.doi.org/10.1167/iovs.12-9657.
Texto completo da fonteNagaraj, Vivek, Andrew Lamperski e Theoden I. Netoff. "Seizure Control in a Computational Model Using a Reinforcement Learning Stimulation Paradigm". International Journal of Neural Systems 27, n.º 07 (28 de agosto de 2017): 1750012. http://dx.doi.org/10.1142/s0129065717500125.
Texto completo da fonteAlam, Manjurul, e Padmanabhan Seshaiyer. "Impact of Contact Constraints on the Dynamics of Idealized Intracranial Saccular Aneurysms". Bioengineering 6, n.º 3 (30 de agosto de 2019): 77. http://dx.doi.org/10.3390/bioengineering6030077.
Texto completo da fonteZanini, Chiara, e Fabio Zanolin. "Complex dynamics in a nerve fiber model with periodic coefficients". Nonlinear Analysis: Real World Applications 10, n.º 3 (junho de 2009): 1381–400. http://dx.doi.org/10.1016/j.nonrwa.2008.01.024.
Texto completo da fonteLai, Ying-Cheng, Raimond L. Winslow e Murray B. Sachs. "The Functional Role of Excitatory and Inhibitory Interactions in Chopper Cells of the Anteroventral Cochlear Nucleus". Neural Computation 6, n.º 6 (novembro de 1994): 1127–40. http://dx.doi.org/10.1162/neco.1994.6.6.1127.
Texto completo da fonteHamasaki, Toru, e Masami Iwamoto. "Computational analysis of the relationship between mechanical state and mechanoreceptor responses during scanning of a textured surface". Advances in Mechanical Engineering 11, n.º 11 (novembro de 2019): 168781401988526. http://dx.doi.org/10.1177/1687814019885263.
Texto completo da fonteSchaette, Roland, e Richard Kempter. "Predicting Tinnitus Pitch From Patients' Audiograms With a Computational Model for the Development of Neuronal Hyperactivity". Journal of Neurophysiology 101, n.º 6 (junho de 2009): 3042–52. http://dx.doi.org/10.1152/jn.91256.2008.
Texto completo da fonteCang, Jianhua, e W. Otto Friesen. "Model for Intersegmental Coordination of Leech Swimming: Central and Sensory Mechanisms". Journal of Neurophysiology 87, n.º 6 (1 de junho de 2002): 2760–69. http://dx.doi.org/10.1152/jn.2002.87.6.2760.
Texto completo da fonteZarei, Vahhab, Sijia Zhang, Beth A. Winkelstein e Victor H. Barocas. "Tissue loading and microstructure regulate the deformation of embedded nerve fibres: predictions from single-scale and multiscale simulations". Journal of The Royal Society Interface 14, n.º 135 (outubro de 2017): 20170326. http://dx.doi.org/10.1098/rsif.2017.0326.
Texto completo da fonteCoy, Rachel, Maxime Berg, James B. Phillips e Rebecca J. Shipley. "Modelling-informed cell-seeded nerve repair construct designs for treating peripheral nerve injuries". PLOS Computational Biology 17, n.º 7 (8 de julho de 2021): e1009142. http://dx.doi.org/10.1371/journal.pcbi.1009142.
Texto completo da fonteLIN, M., Z. Y. LUO, B. F. BAI, F. XU e T. J. LU. "FLUID DYNAMICS ANALYSIS OF SHEAR STRESS ON NERVE ENDINGS IN DENTINAL MICROTUBULE: A QUANTITATIVE INTERPRETATION OF HYDRODYNAMIC THEORY FOR DENTAL PAIN". Journal of Mechanics in Medicine and Biology 11, n.º 01 (março de 2011): 205–19. http://dx.doi.org/10.1142/s0219519411003983.
Texto completo da fonteYang, Hyejin, Jong Ho Won, Inyong Choi e Jihwan Woo. "A computational study to model the effect of electrode-to-auditory nerve fiber distance on spectral resolution in cochlear implant". PLOS ONE 15, n.º 8 (3 de agosto de 2020): e0236784. http://dx.doi.org/10.1371/journal.pone.0236784.
Texto completo da fonteMandal, Debasish, Bhaskar Mondal e Abhijit K. Das. "Isomerization and Decomposition of a Model Nerve Agent: A Computational Analysis of the Reaction Energetics and Kinetics of Dimethyl Ethylphosphonate". Journal of Physical Chemistry A 114, n.º 39 (7 de outubro de 2010): 10717–25. http://dx.doi.org/10.1021/jp106270d.
Texto completo da fonteManakova, N. А., e O. V. Gavrilova. "About Nonuniqueness of Solutions of the Showalter-Sidorov Problem for One Mathematical Model of Nerve Impulse Spread in Membrane". Bulletin of the South Ural State University. Series "Mathematical Modelling, Programming and Computer Software" 11, n.º 4 (2018): 161–68. http://dx.doi.org/10.14529/mmp180413.
Texto completo da fonteBarnett, William H., Sarah E. M. Jenkin, William K. Milsom, Julian F. R. Paton, Ana P. Abdala, Yaroslav I. Molkov e Daniel B. Zoccal. "The Kölliker-Fuse nucleus orchestrates the timing of expiratory abdominal nerve bursting". Journal of Neurophysiology 119, n.º 2 (1 de fevereiro de 2018): 401–12. http://dx.doi.org/10.1152/jn.00499.2017.
Texto completo da fonteDong, Yi, Stefan Mihalas, Sung Soo Kim, Takashi Yoshioka, Sliman Bensmaia e Ernst Niebur. "A simple model of mechanotransduction in primate glabrous skin". Journal of Neurophysiology 109, n.º 5 (1 de março de 2013): 1350–59. http://dx.doi.org/10.1152/jn.00395.2012.
Texto completo da fonteCantrell, Meredith B., Warren M. Grill e Stephen M. Klein. "Computer-based Finite Element Modeling of Insulated Tuohy Needles Used in Regional Anesthesia". Anesthesiology 110, n.º 6 (1 de junho de 2009): 1229–34. http://dx.doi.org/10.1097/aln.0b013e3181a16275.
Texto completo da fonteScoz, Alessia, Laura Bertazzi e Eleuterio F. Toro. "On well-posedness of a mathematical model for cerebrospinal fluid in the optic nerve sheath and the spinal subarachnoid space". Applied Mathematics and Computation 413 (janeiro de 2022): 126625. http://dx.doi.org/10.1016/j.amc.2021.126625.
Texto completo da fonte