Literatura científica selecionada sobre o tema "Contraction perfect graphs"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Contraction perfect graphs".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Artigos de revistas sobre o assunto "Contraction perfect graphs"

1

Diner, Öznur Yaşar, Daniël Paulusma, Christophe Picouleau, and Bernard Ries. "Contraction and deletion blockers for perfect graphs and H-free graphs." Theoretical Computer Science 746 (October 2018): 49–72. http://dx.doi.org/10.1016/j.tcs.2018.06.023.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Bertschi, Marc E. "Perfectly contractile graphs." Journal of Combinatorial Theory, Series B 50, no. 2 (1990): 222–30. http://dx.doi.org/10.1016/0095-8956(90)90077-d.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Maffray, Frédéric, and Nicolas Trotignon. "Algorithms for Perfectly Contractile Graphs." SIAM Journal on Discrete Mathematics 19, no. 3 (2005): 553–74. http://dx.doi.org/10.1137/s0895480104442522.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Sales, Cláudia Linhares, Frédéric Maffray, and Bruce Reed. "On Planar Perfectly Contractile Graphs." Graphs and Combinatorics 13, no. 2 (1997): 167–87. http://dx.doi.org/10.1007/bf03352994.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Rusu, Irena. "Perfectly contractile diamond-free graphs." Journal of Graph Theory 32, no. 4 (1999): 359–89. http://dx.doi.org/10.1002/(sici)1097-0118(199912)32:4<359::aid-jgt5>3.0.co;2-u.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Sales, Cláudia Linhares, and Frédéric Maffray. "On dart-free perfectly contractile graphs." Theoretical Computer Science 321, no. 2-3 (2004): 171–94. http://dx.doi.org/10.1016/j.tcs.2003.11.026.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Lévêque, Benjamin, and Frédéric Maffray. "Coloring Bull-Free Perfectly Contractile Graphs." SIAM Journal on Discrete Mathematics 21, no. 4 (2008): 999–1018. http://dx.doi.org/10.1137/06065948x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Maffray, Frédéric, and Nicolas Trotignon. "A class of perfectly contractile graphs." Journal of Combinatorial Theory, Series B 96, no. 1 (2006): 1–19. http://dx.doi.org/10.1016/j.jctb.2005.06.011.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

PANDA, SWARUP. "Inverses of bicyclic graphs." Electronic Journal of Linear Algebra 32 (February 6, 2017): 217–31. http://dx.doi.org/10.13001/1081-3810.3322.

Texto completo da fonte
Resumo:
A graph G is said to be nonsingular (resp., singular) if its adjacency matrix A(G) is nonsingular (resp., singular). The inverse of a nonsingular graph G is the unique weighted graph whose adjacency matrix is similar to the inverse of the adjacency matrix A(G) via a diagonal matrix of ±1s. Consider connected bipartite graphs with unique perfect matchings such that the graph obtained by contracting all matching edges is also bipartite. In [C.D. Godsil. Inverses of trees. Combinatorica, 5(1):33–39, 1985.], Godsil proved that such graphs are invertible. He posed the question of characterizing
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Fischer, Ilse, and C. H. C. Little. "Even Circuits of Prescribed Clockwise Parity." Electronic Journal of Combinatorics 10, no. 1 (2003). http://dx.doi.org/10.37236/1738.

Texto completo da fonte
Resumo:
We show that a graph has an orientation under which every circuit of even length is clockwise odd if and only if the graph contains no subgraph which is, after the contraction of at most one circuit of odd length, an even subdivision of $K_{2,3}$. In fact we give a more general characterisation of graphs that have an orientation under which every even circuit has a prescribed clockwise parity. Moreover we show that this characterisation has an equivalent analogue for signed graphs. We were motivated to study the original problem by our work on Pfaffian graphs, which are the graphs that have an
Estilos ABNT, Harvard, Vancouver, APA, etc.
Mais fontes
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!