Artigos de revistas sobre o tema "Copper Antimony Sulfide"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Copper Antimony Sulfide".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Sarswat, Prashant K., and Michael L. Free. "Enhanced Photoelectrochemical Response from Copper Antimony Zinc Sulfide Thin Films on Transparent Conducting Electrode." International Journal of Photoenergy 2013 (2013): 1–7. http://dx.doi.org/10.1155/2013/154694.
Texto completo da fonteSolozhenkin, Petr M. "Technology of Dry Wastes Processing of Sorption and Solutions of Antimony Chlorides." Transbaikal State University Journal 30, no. 1 (2024): 73–80. http://dx.doi.org/10.21209/2227-9245-2024-30-1-73-80.
Texto completo da fonteVinayakumar, V., S. Shaji, D. Avellaneda, J. A. Aguilar-Martínez, and B. Krishnan. "Copper antimony sulfide thin films for visible to near infrared photodetector applications." RSC Advances 8, no. 54 (2018): 31055–65. http://dx.doi.org/10.1039/c8ra05662e.
Texto completo da fonteWang, Wei, Zheng Xu, Song Tao Huang, et al. "Characteristics Research and Selective Leaching of Anode Slime with High Content of Copper and Stannum." Advanced Materials Research 1010-1012 (August 2014): 1594–97. http://dx.doi.org/10.4028/www.scientific.net/amr.1010-1012.1594.
Texto completo da fonteZhang, Feng, Keqiang Chen, Xiantao Jiang, et al. "Nonlinear optical absorption and ultrafast carrier dynamics of copper antimony sulfide semiconductor nanocrystals." Journal of Materials Chemistry C 6, no. 33 (2018): 8977–83. http://dx.doi.org/10.1039/c8tc01606b.
Texto completo da fonteRylnikova, Marina, Viktor Fedotenko, and Natalia Mitishova. "Influence of structural and textural features of ores and rocks on mine dust explosion hazard during development of pyrite deposits." E3S Web of Conferences 192 (2020): 03017. http://dx.doi.org/10.1051/e3sconf/202019203017.
Texto completo da fonteZeng, Qiang, Yunxiang Di, Chun Huang, et al. "Famatinite Cu3SbS4 nanocrystals as hole transporting material for efficient perovskite solar cells." Journal of Materials Chemistry C 6, no. 30 (2018): 7989–93. http://dx.doi.org/10.1039/c8tc02133c.
Texto completo da fonteZou, Yu, and Jiang Jiang. "Colloidal synthesis of chalcostibite copper antimony sulfide nanocrystals." Materials Letters 123 (May 2014): 66–69. http://dx.doi.org/10.1016/j.matlet.2014.02.069.
Texto completo da fonteXu, Dongying, Shuling Shen, Yejun Zhang, Hongwei Gu, and Qiangbin Wang. "Selective Synthesis of Ternary Copper–Antimony Sulfide Nanocrystals." Inorganic Chemistry 52, no. 22 (2013): 12958–62. http://dx.doi.org/10.1021/ic401291a.
Texto completo da fonteRath, Thomas, Andrew J. MacLachlan, Michael D. Brown, and Saif A. Haque. "Structural, optical and charge generation properties of chalcostibite and tetrahedrite copper antimony sulfide thin films prepared from metal xanthates." Journal of Materials Chemistry A 3, no. 47 (2015): 24155–62. http://dx.doi.org/10.1039/c5ta05777a.
Texto completo da fonteVolodin, Valeriy, Alina Nitsenko, Xeniya Linnik, and Sergey Trebukhov. "Distribution of Rare Elements in Distillation Processing of Polymetallic Matte." Metals 13, no. 12 (2023): 1934. http://dx.doi.org/10.3390/met13121934.
Texto completo da fontevan Embden, Joel, and Yasuhiro Tachibana. "Synthesis and characterisation of famatinite copper antimony sulfide nanocrystals." Journal of Materials Chemistry 22, no. 23 (2012): 11466. http://dx.doi.org/10.1039/c2jm32094k.
Texto completo da fontePowell, Anthony V., Raquel Paniagua, Paz Vaqueiro, and Ann M. Chippindale. "An Antimony Sulfide with Copper Pillars: [C4H12N2]0.5[CuSb6S10]." Chemistry of Materials 14, no. 3 (2002): 1220–24. http://dx.doi.org/10.1021/cm010751f.
Texto completo da fontePowell, Anthony V., Sylvain Boissière, and Ann M. Chippindale. "A new mixed-valent copper–antimony sulfide: [H2NCH2CH2NH2]0.5[Cu2SbS3]." Journal of the Chemical Society, Dalton Transactions, no. 22 (2000): 4192–95. http://dx.doi.org/10.1039/b005111j.
Texto completo da fonteOrnelas-Acosta, R. E., S. Shaji, D. Avellaneda, G. A. Castillo, T. K. Das Roy, and B. Krishnan. "Thin films of copper antimony sulfide: A photovoltaic absorber material." Materials Research Bulletin 61 (January 2015): 215–25. http://dx.doi.org/10.1016/j.materresbull.2014.10.027.
Texto completo da fonteRamasamy, Karthik, Hunter Sims, William H. Butler, and Arunava Gupta. "Mono-, Few-, and Multiple Layers of Copper Antimony Sulfide (CuSbS2): A Ternary Layered Sulfide." Journal of the American Chemical Society 136, no. 4 (2014): 1587–98. http://dx.doi.org/10.1021/ja411748g.
Texto completo da fonteMcNulty, Brian A., Simon M. Jowitt, and Ivan Belousov. "THE IMPORTANCE OF GEOLOGY IN ASSESSING BY- AND COPRODUCT METAL SUPPLY POTENTIAL; A CASE STUDY OF ANTIMONY, BISMUTH, SELENIUM, AND TELLURIUM WITHIN THE COPPER PRODUCTION STREAM." Economic Geology 117, no. 6 (2022): 1367–85. http://dx.doi.org/10.5382/econgeo.4919.
Texto completo da fonteCho, Ara, Shahara Banu, Kihwan Kim, et al. "Selective thin film synthesis of copper-antimony-sulfide using hybrid ink." Solar Energy 145 (March 2017): 42–51. http://dx.doi.org/10.1016/j.solener.2016.12.048.
Texto completo da fonteSuehiro, Satoshi, Keisuke Horita, Masayoshi Yuasa, et al. "Synthesis of Copper–Antimony-Sulfide Nanocrystals for Solution-Processed Solar Cells." Inorganic Chemistry 54, no. 16 (2015): 7840–45. http://dx.doi.org/10.1021/acs.inorgchem.5b00858.
Texto completo da fonteRamos Aquino, Jose Agustin, Dorian Leonardo Rodriguez Vela, Sadasivan Shaji, David Avellaneda Avellaneda, and Bindu Krishnan. "Spray pyrolysed thin films of copper antimony sulfide as photovoltaic absorber." physica status solidi (c) 13, no. 1 (2015): 24–29. http://dx.doi.org/10.1002/pssc.201510102.
Texto completo da fontePowell, Anthony V., Raquel Paniagua, Paz Vaqueiro, and Ann M. Chippindale. "ChemInform Abstract: An Antimony Sulfide with Copper Pillars: [C4H12N2]0.5 [CuSb6S10]." ChemInform 33, no. 23 (2010): no. http://dx.doi.org/10.1002/chin.200223021.
Texto completo da fonteOráč, Dušan, Martina Laubertová, František Molnár, Jakub Klimko, Vladimír Marcinov, and Jana Pirošková. "Thermodynamic Study Proposal of Processing By-Product Containing Au, Ag, Cu and Fe Sulfides from Antimony Ore Treatment." Processes 13, no. 3 (2025): 842. https://doi.org/10.3390/pr13030842.
Texto completo da fonteIshaq, Muhammad, Hui Deng, Umar Farooq, et al. "Efficient Copper‐Doped Antimony Sulfide Thin‐Film Solar Cells via Coevaporation Method." Solar RRL 3, no. 12 (2019): 1900305. http://dx.doi.org/10.1002/solr.201900305.
Texto completo da fonteLiu, Ziliang, Yizhe Tong, Xingmin He, and Longyi Chen. "Study on Optimization of Deep Purification Process Design of Zinc Oxygen Pressure Acid Leaching Solution." Journal of Physics: Conference Series 2738, no. 1 (2024): 012013. http://dx.doi.org/10.1088/1742-6596/2738/1/012013.
Texto completo da fonteAdewoyin, Adeyinka D. "Absorber layer optimisation of copper antimony sulfide thin film photovoltaics using numerical simulation." Superlattices and Microstructures 158 (October 2021): 107029. http://dx.doi.org/10.1016/j.spmi.2021.107029.
Texto completo da fonteSwathi, S., R. Yuvakkumar, P. Senthil Kumar, G. Ravi, and Dhayalan Velauthapillai. "Polyvinylpyrrolidone-assisted novel copper antimony sulfide nanorods for highly efficient hydrogen evolution reaction." Fuel 314 (April 2022): 123096. http://dx.doi.org/10.1016/j.fuel.2021.123096.
Texto completo da fonteBella, M., C. Rivero, S. Blayac, H. Basti, M. C. Record, and P. Boulet. "Oleylamine-assisted solvothermal synthesis of copper antimony sulfide nanocrystals: Morphology and phase control." Materials Research Bulletin 90 (June 2017): 188–94. http://dx.doi.org/10.1016/j.materresbull.2017.02.036.
Texto completo da fonteDevi, Chandni, and Rajesh Mehra. "Device simulation of lead-free MASnI3 solar cell with CuSbS2 (copper antimony sulfide)." Journal of Materials Science 54, no. 7 (2019): 5615–24. http://dx.doi.org/10.1007/s10853-018-03265-y.
Texto completo da fonteŠtrbac, Nada, Miroslav Sokić, Aleksandra Mitovski, et al. "Investigation of Bi2S3 oxidation process at elevated temperatures in the air atmosphere." Tehnika 75, no. 6 (2020): 587–93. http://dx.doi.org/10.5937/tehnika2005587s.
Texto completo da fonteSun, Guilin, Guochun Dong, Sufen Tao, Yunjin Xia, and Chao Chen. "Effect of Sulfur on Antimony-Induced High-Temperature Ductility Deterioration of C-Mn Steel." Metals 13, no. 1 (2023): 130. http://dx.doi.org/10.3390/met13010130.
Texto completo da fonteHu, Ping, Yulian Dong, Guowei Yang, et al. "Hollow CuSbSy Coated by Nitrogen-Doped Carbon as Anode Electrode for High-Performance Potassium-Ion Storage." Batteries 9, no. 5 (2023): 238. http://dx.doi.org/10.3390/batteries9050238.
Texto completo da fonteDosmukhamedov, N. K., E. E. Zholdasbay, A. A. Argyn, Yu B. Icheva, and M. B. Kurmanseitov. "Enlarged tests on the processing of copper-lead mattes obtained after reductive smelting of balanced feed charge." Kompleksnoe Ispolzovanie Mineralnogo Syra = Complex Use of Mineral Resources 337, no. 2 (2025): 75–84. https://doi.org/10.31643/2026/6445.19.
Texto completo da fonteHota, Poulami, Arijit Kapuria, Saptasree Bose, Dilip K. Maiti, and Shyamal K. Saha. "The role of lone-pair electrons on electrocatalytic activity of copper antimony sulfide nanostructures." Materials Chemistry and Physics 291 (November 2022): 126676. http://dx.doi.org/10.1016/j.matchemphys.2022.126676.
Texto completo da fonteKishore Kumar, Y. B., S. Guru Prasad, A. S. Swapna Smitha, et al. "Effect of carrier gas on copper antimony sulfide thin films by spray pyrolytic approach." Chalcogenide Letters 21, no. 9 (2024): 719–27. http://dx.doi.org/10.15251/cl.2024.219.719.
Texto completo da fonteKumar, B. Hemanth, S. Shaji, and M. C. Santhosh Kumar. "Effect of substrate temperature on properties of co-evaporated copper antimony sulfide thin films." Thin Solid Films 697 (March 2020): 137838. http://dx.doi.org/10.1016/j.tsf.2020.137838.
Texto completo da fonteSribenjawan, Janthima, Duanghatai Raknual, Veeramol Vailikhit, Nareerat Kitisripanya, and Auttasit Tubtimtae. "Facile synthesis of copper-antimony-sulfide nanostructures on WO3 electrodes: Investigation of electrochemical performance." Materials Letters 245 (June 2019): 126–29. http://dx.doi.org/10.1016/j.matlet.2019.02.120.
Texto completo da fonteBlanco-Vino, Walter, Gerardo Zamora, and Javier I. Ordóñez. "Selective Removal of Arsenic and Antimony from Pb-Ag Sulfide Concentrates by Alkaline Leaching: Thermodynamic and Kinetic Studies." Mining 4, no. 2 (2024): 284–301. http://dx.doi.org/10.3390/mining4020017.
Texto completo da fonteKhanchuk, A. I., V. P. Molchanov, and D. V. Androsov. "THE FIRST INFORMATION ABOUT THE GOLD-COPPER MINERALIZATION OF THE KONTORSKOYE ORE OPENING (ARIADNE INTRUSION OF ULTRABASITES, PRIMORYE)." Доклады Российской академии наук. Науки о Земле 511, no. 1 (2023): 5–11. http://dx.doi.org/10.31857/s268673972260240x.
Texto completo da fonteBarros, Kayo Santana, Vicente Schaeffer Vielmo, Belén Garrido Moreno, Gabriel Riveros, Gerardo Cifuentes, and Andréa Moura Bernardes. "Chemical Composition Data of the Main Stages of Copper Production from Sulfide Minerals in Chile: A Review to Assist Circular Economy Studies." Minerals 12, no. 2 (2022): 250. http://dx.doi.org/10.3390/min12020250.
Texto completo da fonteRamasamy, Karthik, Benjamin Tien, P. S. Archana, and Arunava Gupta. "Copper antimony sulfide (CuSbS2) mesocrystals: A potential counter electrode material for dye-sensitized solar cells." Materials Letters 124 (June 2014): 227–30. http://dx.doi.org/10.1016/j.matlet.2014.03.046.
Texto completo da fonteRamasamy, Karthik, Hunter Sims, William H. Butler, and Arunava Gupta. "Selective Nanocrystal Synthesis and Calculated Electronic Structure of All Four Phases of Copper–Antimony–Sulfide." Chemistry of Materials 26, no. 9 (2014): 2891–99. http://dx.doi.org/10.1021/cm5005642.
Texto completo da fonteShapouri, Samaneh, Elnaz Irani, Payam Rajabi Kalvani, et al. "Substrate-Dependent Characteristics of CuSbS2 Solar Absorber Layers Grown by Spray Pyrolysis." Coatings 15, no. 6 (2025): 683. https://doi.org/10.3390/coatings15060683.
Texto completo da fonteShaybekov, R. I., B. A. Makeev, N. N. Kononkova, S. I. Isaenko, and E. M. Tropnikov. "Palladium tellurides and bismuthtellurides in sulfide copper-nickel ores of the Savabeisky ore occurrence (Nenets Autonomous District, Russsia)." LITHOSPHERE (Russia) 21, no. 4 (2021): 574–94. http://dx.doi.org/10.24930/1681-9004-2021-21-4-574-594.
Texto completo da fonteZhang, Yu, Jianhua Tian, Kejian Jiang, Jinhua Huang, Huijia Wang, and Yanlin Song. "In situ gas-solid reaction for fabrication of copper antimony sulfide thin film as photovoltaic absorber." Materials Letters 209 (December 2017): 23–26. http://dx.doi.org/10.1016/j.matlet.2017.07.106.
Texto completo da fonteAskarova, Gulzhan, Mels Shautenov, and Kulzhamal Nogaeva. "Flotation enrichment of resistant gold ores." E3S Web of Conferences 168 (2020): 00005. http://dx.doi.org/10.1051/e3sconf/202016800005.
Texto completo da fonteShaji, S., V. Vinayakumar, B. Krishnan, et al. "Copper antimony sulfide nanoparticles by pulsed laser ablation in liquid and their thin film for photovoltaic application." Applied Surface Science 476 (May 2019): 94–106. http://dx.doi.org/10.1016/j.apsusc.2019.01.072.
Texto completo da fonteKrishnan, B., S. Shaji, and R. Ernesto Ornelas. "Progress in development of copper antimony sulfide thin films as an alternative material for solar energy harvesting." Journal of Materials Science: Materials in Electronics 26, no. 7 (2015): 4770–81. http://dx.doi.org/10.1007/s10854-015-3092-2.
Texto completo da fonteRamasamy, Karthik, Hunter Sims, William H. Butler, and Arunava Gupta. "ChemInform Abstract: Selective Nanocrystal Synthesis and Calculated Electronic Structure of All Four Phases of Copper-Antimony-Sulfide." ChemInform 45, no. 29 (2014): no. http://dx.doi.org/10.1002/chin.201429028.
Texto completo da fonteKvyatkovskiy, S. A., S. M. Kozhakhmetov, A. S. Semenova, M. A. Dyussebekova, and A. A. Shakhalov. "Hydrothermal treatment of sinters containing thiosalts of non-ferrous metals." Kompleksnoe Ispolzovanie Mineralnogo Syra = Complex Use of Mineral Resources 335, no. 4 (2024): 42–49. http://dx.doi.org/10.31643/2025/6445.38.
Texto completo da fonteChen, Keqiang, Jing Zhou, Wen Chen, Qiao Chen, Peng Zhou, and Yueli Liu. "A green synthesis route for the phase and size tunability of copper antimony sulfide nanocrystals with high yield." Nanoscale 8, no. 9 (2016): 5146–52. http://dx.doi.org/10.1039/c5nr09097k.
Texto completo da fonte