Artigos de revistas sobre o tema "Coupled evolution equations"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Coupled evolution equations".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Maruszewski, Bogdan. "Coupled evolution equations of deformable semiconductors." International Journal of Engineering Science 25, no. 2 (1987): 145–53. http://dx.doi.org/10.1016/0020-7225(87)90002-4.
Texto completo da fonteYusufoğlu, Elcin, and Ahmet Bekir. "Exact solutions of coupled nonlinear evolution equations." Chaos, Solitons & Fractals 37, no. 3 (2008): 842–48. http://dx.doi.org/10.1016/j.chaos.2006.09.074.
Texto completo da fonteNakagiri, Shin-ichi, and Jun-hong Ha. "COUPLED SINE-GORDON EQUATIONS AS NONLINEAR SECOND ORDER EVOLUTION EQUATIONS." Taiwanese Journal of Mathematics 5, no. 2 (2001): 297–315. http://dx.doi.org/10.11650/twjm/1500407338.
Texto completo da fonteZhao, Dan, and Zhaqilao. "Darboux transformation approach for two new coupled nonlinear evolution equations." Modern Physics Letters B 34, no. 01 (2019): 2050004. http://dx.doi.org/10.1142/s0217984920500049.
Texto completo da fonteKhan, K., and M. A. Akbar. "Solitary Wave Solutions of Some Coupled Nonlinear Evolution Equations." Journal of Scientific Research 6, no. 2 (2014): 273–84. http://dx.doi.org/10.3329/jsr.v6i2.16671.
Texto completo da fonteMalfliet, W. "Travelling-wave solutions of coupled nonlinear evolution equations." Mathematics and Computers in Simulation 62, no. 1-2 (2003): 101–8. http://dx.doi.org/10.1016/s0378-4754(02)00182-9.
Texto completo da fonteAlabau, F., P. Cannarsa, and V. Komornik. "Indirect internal stabilization of weakly coupled evolution equations." Journal of Evolution Equations 2, no. 2 (2002): 127–50. http://dx.doi.org/10.1007/s00028-002-8083-0.
Texto completo da fonteRYDER, E., and D. F. PARKER. "Coupled evolution equations for axially inhomogeneous optical fibres." IMA Journal of Applied Mathematics 49, no. 3 (1992): 293–309. http://dx.doi.org/10.1093/imamat/49.3.293.
Texto completo da fonteKhan, Kamruzzaman, and M. Ali Akbar. "Traveling Wave Solutions of Some Coupled Nonlinear Evolution Equations." ISRN Mathematical Physics 2013 (May 20, 2013): 1–8. http://dx.doi.org/10.1155/2013/685736.
Texto completo da fonteHassaballa, Abaker A., Fathea M. O. Birkea, Ahmed M. A. Adam, et al. "Multiple and Singular Soliton Solutions for Space–Time Fractional Coupled Modified Korteweg–De Vries Equations." International Journal of Analysis and Applications 22 (April 22, 2024): 68. http://dx.doi.org/10.28924/2291-8639-22-2024-68.
Texto completo da fonteWan, Qian, and Ti-Jun Xiao. "Exponential Stability of Two Coupled Second-Order Evolution Equations." Advances in Difference Equations 2011 (2011): 1–14. http://dx.doi.org/10.1155/2011/879649.
Texto completo da fonteArafa, A. A. M., and S. Z. Rida. "Numerical solutions for some generalized coupled nonlinear evolution equations." Mathematical and Computer Modelling 56, no. 11-12 (2012): 268–77. http://dx.doi.org/10.1016/j.mcm.2011.12.046.
Texto completo da fonteSeadawy, A. R., and K. El-Rashidy. "Traveling wave solutions for some coupled nonlinear evolution equations." Mathematical and Computer Modelling 57, no. 5-6 (2013): 1371–79. http://dx.doi.org/10.1016/j.mcm.2012.11.026.
Texto completo da fonteHao, Jianghao, Zhaobin Kuang, Zhuangyi Liu, and Jiongmin Yong. "Stability analysis for two coupled second order evolution equations." Journal of Differential Equations 432 (July 2025): 113246. https://doi.org/10.1016/j.jde.2025.113246.
Texto completo da fonteLiu, Wenyuan, Wei Xia, and Shengping Shen. "Fully Coupling Chemomechanical Yield Theory Based on Evolution Equations." International Journal of Applied Mechanics 08, no. 04 (2016): 1650058. http://dx.doi.org/10.1142/s1758825116500587.
Texto completo da fonteElwakil, Elsayed Abd Elaty, and Mohamed Aly Abdou. "New Applications of the Homotopy Analysis Method." Zeitschrift für Naturforschung A 63, no. 7-8 (2008): 385–92. http://dx.doi.org/10.1515/zna-2008-7-801.
Texto completo da fonteHan, Ding, Bing Gen Zhan, and Xiao Ming Huang. "Fatigue Analysis of the Asphalt Mixture Beam Using Damage Evolution Equations." Advanced Materials Research 163-167 (December 2010): 3332–35. http://dx.doi.org/10.4028/www.scientific.net/amr.163-167.3332.
Texto completo da fonteJunker, Philipp, and Daniel Balzani. "An extended Hamilton principle as unifying theory for coupled problems and dissipative microstructure evolution." Continuum Mechanics and Thermodynamics 33, no. 4 (2021): 1931–56. http://dx.doi.org/10.1007/s00161-021-01017-z.
Texto completo da fonteMA, WEN-XIU. "AKNS Type Reduced Integrable Hierarchies with Hamiltonian Formulations." Romanian Journal of Physics 68, no. 9-10 (2023): 116. http://dx.doi.org/10.59277/romjphys.2023.68.116.
Texto completo da fonteRoy, P. K. "An integrable system governed by coupled non-linear evolution equations." Il Nuovo Cimento A 109, no. 11 (1996): 1613–15. http://dx.doi.org/10.1007/bf02778246.
Texto completo da fonteAbdelkawy, M. A., A. H. Bhrawy, E. Zerrad, and A. Biswas. "Application of Tanh Method to Complex Coupled Nonlinear Evolution Equations." Acta Physica Polonica A 129, no. 3 (2016): 278–83. http://dx.doi.org/10.12693/aphyspola.129.278.
Texto completo da fonteKovriguine, Dmitrij, та Alexandr Potapov. "Nonlinear wave dynamics of one-dimensional elastic systems. Part I. Method оf coupled normal waves". Izvestiya VUZ. Applied Nonlinear Dynamics 4, № 2 (1996): 72–80. https://doi.org/10.18500/0869-6632-1996-4-2-72-80.
Texto completo da fonteAlzaidy, J. F. "Extended Mapping Method and Its Applications to Nonlinear Evolution Equations." Journal of Applied Mathematics 2012 (2012): 1–14. http://dx.doi.org/10.1155/2012/597983.
Texto completo da fonteDebsarma, S., S. Senapati, and K. P. Das. "Nonlinear Evolution Equations for Broader Bandwidth Wave Packets in Crossing Sea States." International Journal of Oceanography 2014 (June 9, 2014): 1–9. http://dx.doi.org/10.1155/2014/597895.
Texto completo da fonteSchneider, Guido. "Justification of mean-field coupled modulation equations." Proceedings of the Royal Society of Edinburgh: Section A Mathematics 127, no. 3 (1997): 639–50. http://dx.doi.org/10.1017/s0308210500029942.
Texto completo da fonteHua, Yuan, Bao Hua Lv, and Tai Quan Zhou. "Parametric Variational Principle for Solving Coupled Damage Problem." Key Engineering Materials 348-349 (September 2007): 813–16. http://dx.doi.org/10.4028/www.scientific.net/kem.348-349.813.
Texto completo da fonteEl-Aqqad, Brahim. "The equations coupled by Von Karman system with thermoelasticity." Gulf Journal of Mathematics 17, no. 2 (2024): 190–207. http://dx.doi.org/10.56947/gjom.v17i2.2171.
Texto completo da fonteCarrington, M. E., R. Kobes, G. Kunstatter, D. Pickering, and E. Vaz. "Equilibration in an interacting field theory." Canadian Journal of Physics 80, no. 9 (2002): 987–93. http://dx.doi.org/10.1139/p02-065.
Texto completo da fonteXu, Siqi, Xianguo Geng, and Bo Xue. "An extension of the coupled derivative nonlinear Schrödinger hierarchy." Modern Physics Letters B 32, no. 02 (2018): 1850016. http://dx.doi.org/10.1142/s0217984918500161.
Texto completo da fonteKHANI, F., M. T. DARVISHI, A. FARMANY, and L. KAVITHA. "NEW EXACT SOLUTIONS OF COUPLED (2+1)-DIMENSIONAL NONLINEAR SYSTEMS OF SCHRÖDINGER EQUATIONS." ANZIAM Journal 52, no. 1 (2010): 110–21. http://dx.doi.org/10.1017/s1446181111000563.
Texto completo da fonteErjaee, G. H., and M. Alnasr. "Phase Synchronization in Coupled Sprott Chaotic Systems Presented by Fractional Differential Equations." Discrete Dynamics in Nature and Society 2009 (2009): 1–10. http://dx.doi.org/10.1155/2009/753746.
Texto completo da fonteGuesmia, Aissa. "Asymptotic behavior for coupled abstract evolution equations with one infinite memory." Applicable Analysis 94, no. 1 (2014): 184–217. http://dx.doi.org/10.1080/00036811.2014.890708.
Texto completo da fonteTsang, S. C., and K. W. Chow. "The evolution of periodic waves of the coupled nonlinear Schrödinger equations." Mathematics and Computers in Simulation 66, no. 6 (2004): 551–64. http://dx.doi.org/10.1016/j.matcom.2004.04.002.
Texto completo da fonteda Silva Alves, Margareth, and Octavio Paulo Vera Villagrán. "Smoothing properties for a coupled system of nonlinear evolution dispersive equations." Indagationes Mathematicae 20, no. 2 (2009): 285–327. http://dx.doi.org/10.1016/s0019-3577(09)80015-3.
Texto completo da fonteXiao, Ti-Jun, and Jin Liang. "Coupled second order semilinear evolution equations indirectly damped via memory effects." Journal of Differential Equations 254, no. 5 (2013): 2128–57. http://dx.doi.org/10.1016/j.jde.2012.11.019.
Texto completo da fonteGhose, Chandana, and A. Roy Chowdhury. "Periodic inverse problem for a new hierarchy of coupled evolution equations." International Journal of Theoretical Physics 30, no. 7 (1991): 1033–39. http://dx.doi.org/10.1007/bf00673994.
Texto completo da fonteBekir, Ahmet. "Applications of the extended tanh method for coupled nonlinear evolution equations." Communications in Nonlinear Science and Numerical Simulation 13, no. 9 (2008): 1748–57. http://dx.doi.org/10.1016/j.cnsns.2007.05.001.
Texto completo da fonteHereman, Willy. "Exact solitary wave solutions of coupled nonlinear evolution equations using MACSYMA." Computer Physics Communications 65, no. 1-3 (1991): 143–50. http://dx.doi.org/10.1016/0010-4655(91)90166-i.
Texto completo da fonteYaşar, Emrullah, and Sait San. "A Procedure to Construct Conservation Laws of Nonlinear Evolution Equations." Zeitschrift für Naturforschung A 71, no. 5 (2016): 475–80. http://dx.doi.org/10.1515/zna-2016-0057.
Texto completo da fonteShah, Ijaz, Ghazala Anwar, H. A. Shah, T. Abdullah, and M. Anis Alam. "Chaotic Evolution of a Parametric Instability in a Piezoelectric Semiconductor Plasma." International Journal of Bifurcation and Chaos 07, no. 05 (1997): 1103–13. http://dx.doi.org/10.1142/s021812749700090x.
Texto completo da fonteGao, Yi-Tian, and Bo Tian. "Notiz: A Symbolic Computation-Based Method and Two Nonlinear Evolution Equations for Water Waves." Zeitschrift für Naturforschung A 52, no. 3 (1997): 295–96. http://dx.doi.org/10.1515/zna-1997-0311.
Texto completo da fonteLi, Bang Qing, and Yu Lan Ma. "Exact Solutions for Coupled mKdV Equations by a New Symbolic Computation Method." Applied Mechanics and Materials 20-23 (January 2010): 184–89. http://dx.doi.org/10.4028/www.scientific.net/amm.20-23.184.
Texto completo da fonteFASANO, ANTONIO, DIETMAR HÖMBERG, and LUCIA PANIZZI. "A MATHEMATICAL MODEL FOR CASE HARDENING OF STEEL." Mathematical Models and Methods in Applied Sciences 19, no. 11 (2009): 2101–26. http://dx.doi.org/10.1142/s0218202509004054.
Texto completo da fonteYan, Zhenya. "Abundant New Exact Solutions of the Coupled Potential KdV Equation and the Modified KdV-Type Equation." Zeitschrift für Naturforschung A 56, no. 12 (2001): 809–15. http://dx.doi.org/10.1515/zna-2001-1203.
Texto completo da fonteSekhar, Ashok, Alex D. Bain, Jessica A. O. Rumfeldt, Elizabeth M. Meiering, and Lewis E. Kay. "Evolution of magnetization due to asymmetric dimerization: theoretical considerations and application to aberrant oligomers formed by apoSOD12SH." Physical Chemistry Chemical Physics 18, no. 8 (2016): 5720–28. http://dx.doi.org/10.1039/c5cp03044g.
Texto completo da fonteKUZEMSKY, A. L. "GENERALIZED KINETIC AND EVOLUTION EQUATIONS IN THE APPROACH OF THE NONEQUILIBRIUM STATISTICAL OPERATOR." International Journal of Modern Physics B 19, no. 06 (2005): 1029–59. http://dx.doi.org/10.1142/s0217979205029419.
Texto completo da fonteMohammed Djaouti, Abdelhamid. "Weakly Coupled System of Semi-Linear Fractional θ-Evolution Equations with Special Cauchy Conditions". Symmetry 15, № 7 (2023): 1341. http://dx.doi.org/10.3390/sym15071341.
Texto completo da fonteLandim, Ricardo C. G. "Coupled tachyonic dark energy: A dynamical analysis." International Journal of Modern Physics D 24, no. 11 (2015): 1550085. http://dx.doi.org/10.1142/s0218271815500856.
Texto completo da fonteWEBB, G. M., M. BRIO, and G. P. ZANK. "Lagrangian and Hamiltonian aspects of wave mixing in non-uniform media: waves on strings and waves in gas dynamics." Journal of Plasma Physics 60, no. 2 (1998): 341–82. http://dx.doi.org/10.1017/s002237789800693x.
Texto completo da fonteBorisov, V. E., A. V. Ivanov, B. V. Kritsky, and E. B. Savenkov. "Numerical Algorithms for Simulation of a Fluid-Filed Fracture Evolution in a Poroelastic Medium." PNRPU Mechanics Bulletin, no. 2 (December 15, 2021): 24–35. http://dx.doi.org/10.15593/perm.mech/2021.2.03.
Texto completo da fonte