Artigos de revistas sobre o tema "CPU-GPU Partitioning"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 46 melhores artigos de revistas para estudos sobre o assunto "CPU-GPU Partitioning".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Benatia, Akrem, Weixing Ji, Yizhuo Wang, and Feng Shi. "Sparse matrix partitioning for optimizing SpMV on CPU-GPU heterogeneous platforms." International Journal of High Performance Computing Applications 34, no. 1 (2019): 66–80. http://dx.doi.org/10.1177/1094342019886628.
Texto completo da fonteNarayana, Divyaprabha Kabbal, and Sudarshan Tekal Subramanyam Babu. "Optimal task partitioning to minimize failure in heterogeneous computational platform." International Journal of Electrical and Computer Engineering (IJECE) 15, no. 1 (2025): 1079. http://dx.doi.org/10.11591/ijece.v15i1.pp1079-1088.
Texto completo da fonteHuijing Yang and Tingwen Yu. "Two novel cache management mechanisms on CPU-GPU heterogeneous processors." Research Briefs on Information and Communication Technology Evolution 7 (June 15, 2021): 1–8. http://dx.doi.org/10.56801/rebicte.v7i.113.
Texto completo da fonteNarayana, Divyaprabha Kabbal, and Sudarshan Tekal Subramanyam Babu. "Optimal task partitioning to minimize failure in heterogeneous computational platform." International Journal of Electrical and Computer Engineering (IJECE) 15 (February 1, 2025): 1079–88. https://doi.org/10.11591/ijece.v15i1.pp1079-1088.
Texto completo da fonteFang, Juan, Mengxuan Wang, and Zelin Wei. "A memory scheduling strategy for eliminating memory access interference in heterogeneous system." Journal of Supercomputing 76, no. 4 (2020): 3129–54. http://dx.doi.org/10.1007/s11227-019-03135-7.
Texto completo da fonteMERRILL, DUANE, and ANDREW GRIMSHAW. "HIGH PERFORMANCE AND SCALABLE RADIX SORTING: A CASE STUDY OF IMPLEMENTING DYNAMIC PARALLELISM FOR GPU COMPUTING." Parallel Processing Letters 21, no. 02 (2011): 245–72. http://dx.doi.org/10.1142/s0129626411000187.
Texto completo da fonteVilches, Antonio, Rafael Asenjo, Angeles Navarro, Francisco Corbera, Rub́en Gran, and María Garzarán. "Adaptive Partitioning for Irregular Applications on Heterogeneous CPU-GPU Chips." Procedia Computer Science 51 (2015): 140–49. http://dx.doi.org/10.1016/j.procs.2015.05.213.
Texto completo da fonteSung, Hanul, Hyeonsang Eom, and HeonYoung Yeom. "The Need of Cache Partitioning on Shared Cache of Integrated Graphics Processor between CPU and GPU." KIISE Transactions on Computing Practices 20, no. 9 (2014): 507–12. http://dx.doi.org/10.5626/ktcp.2014.20.9.507.
Texto completo da fonteWang, Shunjiang, Baoming Pu, Ming Li, Weichun Ge, Qianwei Liu, and Yujie Pei. "State Estimation Based on Ensemble DA–DSVM in Power System." International Journal of Software Engineering and Knowledge Engineering 29, no. 05 (2019): 653–69. http://dx.doi.org/10.1142/s0218194019400023.
Texto completo da fontePark, Sungwoo, Seyeon Oh, and Min-Soo Kim. "cuMatch: A GPU-based Memory-Efficient Worst-case Optimal Join Processing Method for Subgraph Queries with Complex Patterns." Proceedings of the ACM on Management of Data 3, no. 3 (2025): 1–28. https://doi.org/10.1145/3725398.
Texto completo da fonteBarreiros, Willian, Alba C. M. A. Melo, Jun Kong, et al. "Efficient microscopy image analysis on CPU-GPU systems with cost-aware irregular data partitioning." Journal of Parallel and Distributed Computing 164 (June 2022): 40–54. http://dx.doi.org/10.1016/j.jpdc.2022.02.004.
Texto completo da fonteSingh, Amit Kumar, Alok Prakash, Karunakar Reddy Basireddy, Geoff V. Merrett, and Bashir M. Al-Hashimi. "Energy-Efficient Run-Time Mapping and Thread Partitioning of Concurrent OpenCL Applications on CPU-GPU MPSoCs." ACM Transactions on Embedded Computing Systems 16, no. 5s (2017): 1–22. http://dx.doi.org/10.1145/3126548.
Texto completo da fonteHou, Neng, Fazhi He, Yi Zhou, Yilin Chen, and Xiaohu Yan. "A Parallel Genetic Algorithm With Dispersion Correction for HW/SW Partitioning on Multi-Core CPU and Many-Core GPU." IEEE Access 6 (2018): 883–98. http://dx.doi.org/10.1109/access.2017.2776295.
Texto completo da fonteMahmud, Shohaib, Haiying Shen, and Anand Iyer. "PACER: Accelerating Distributed GNN Training Using Communication-Efficient Partition Refinement and Caching." Proceedings of the ACM on Networking 2, CoNEXT4 (2024): 1–18. http://dx.doi.org/10.1145/3697805.
Texto completo da fonteChen, Hao, Anqi Wei, and Ye Zhang. "Three-level parallel-set partitioning in hierarchical trees coding based on the collaborative CPU and GPU for remote sensing images compression." Journal of Applied Remote Sensing 11, no. 04 (2017): 1. http://dx.doi.org/10.1117/1.jrs.11.045015.
Texto completo da fonteWu, Qunyong, Yuhang Wang, Haoyu Sun, Han Lin, and Zhiyuan Zhao. "A System Coupled GIS and CFD for Atmospheric Pollution Dispersion Simulation in Urban Blocks." Atmosphere 14, no. 5 (2023): 832. http://dx.doi.org/10.3390/atmos14050832.
Texto completo da fonteGiannoula, Christina, Ivan Fernandez, Juan Gómez Luna, Nectarios Koziris, Georgios Goumas, and Onur Mutlu. "SparseP." Proceedings of the ACM on Measurement and Analysis of Computing Systems 6, no. 1 (2022): 1–49. http://dx.doi.org/10.1145/3508041.
Texto completo da fonteKumar, P. S. Jagadeesh, Tracy Lin Huan, and Yang Yung. "Computational Paradigm and Quantitative Optimization to Parallel Processing Performance of Still Image Compression." Circulation in Computer Science 2, no. 4 (2017): 11–17. http://dx.doi.org/10.22632/ccs-2017-252-02.
Texto completo da fonteDuan, Jiaang, Shiyou Qian, Hanwen Hu, Dingyu Yang, Jian Cao, and Guangtao Xue. "PipeCo: Pipelining Cold Start of Deep Learning Inference Services on Serverless Platforms." ACM SIGMETRICS Performance Evaluation Review 53, no. 1 (2025): 151–53. https://doi.org/10.1145/3744970.3727307.
Texto completo da fonteDuan, Jiaang, Shiyou Qian, Hanwen Hu, Dingyu Yang, Jian Cao, and Guangtao Xue. "PipeCo: Pipelining Cold Start of Deep Learning Inference Services on Serverless Platforms." Proceedings of the ACM on Measurement and Analysis of Computing Systems 9, no. 2 (2025): 1–23. https://doi.org/10.1145/3727125.
Texto completo da fonteTANAKA, SATOSHI, KYOKO HASEGAWA, SUSUMU NAKATA, et al. "GRID-INDEPENDENT METROPOLIS SAMPLING FOR VOLUME VISUALIZATION." International Journal of Modeling, Simulation, and Scientific Computing 01, no. 02 (2010): 199–218. http://dx.doi.org/10.1142/s1793962310000158.
Texto completo da fonteGu, Yufeng, Arun Subramaniyan, Tim Dunn, et al. "GenDP: A Framework of Dynamic Programming Acceleration for Genome Sequencing Analysis." Communications of the ACM 68, no. 05 (2025): 81–90. https://doi.org/10.1145/3712168.
Texto completo da fonteBloch, Aurelien, Simone Casale-Brunet, and Marco Mattavelli. "Performance Estimation of High-Level Dataflow Program on Heterogeneous Platforms by Dynamic Network Execution." Journal of Low Power Electronics and Applications 12, no. 3 (2022): 36. http://dx.doi.org/10.3390/jlpea12030036.
Texto completo da fonteGallet, Benoit, and Michael Gowanlock. "Heterogeneous CPU-GPU Epsilon Grid Joins: Static and Dynamic Work Partitioning Strategies." Data Science and Engineering, October 21, 2020. http://dx.doi.org/10.1007/s41019-020-00145-x.
Texto completo da fonteCampos, Cristian, Rafael Asenjo, Javier Hormigo, and Angeles Navarro. "Leveraging SYCL for Heterogeneous cDTW Computation on CPU, GPU, and FPGA." Concurrency and Computation: Practice and Experience 37, no. 15-17 (2025). https://doi.org/10.1002/cpe.70142.
Texto completo da fonteLee, Wan Luan, Dian-Lun Lin, Shui Jiang, et al. "G-kway: Multilevel GPU-Accelerated k-way Graph Partitioner using Task Graph Parallelism." ACM Transactions on Design Automation of Electronic Systems, May 3, 2025. https://doi.org/10.1145/3734522.
Texto completo da fonteWu, Zhenlin, Haosong Zhao, Hongyuan Liu, Wujie Wen, and Jiajia Li. "gHyPart: GPU-friendly End-to-End Hypergraph Partitioner." ACM Transactions on Architecture and Code Optimization, January 10, 2025. https://doi.org/10.1145/3711925.
Texto completo da fonte"Improving Processing Speed of Real-Time Stereo Matching using Heterogenous CPU/GPU Model." International Journal of Innovative Technology and Exploring Engineering 9, no. 5 (2020): 1983–87. http://dx.doi.org/10.35940/ijitee.e2982.039520.
Texto completo da fonteLin, Ning, and Venkata Dinavahi. "Parallel High-Fidelity Electromagnetic Transient Simulation of Large-Scale Multi-Terminal DC Grids." November 19, 2018. https://doi.org/10.5281/zenodo.7685832.
Texto completo da fonteBloch, Aurelien, Simone Casale-Brunet, and Marco Mattavelli. "Design Space Exploration for Partitioning Dataflow Program on CPU-GPU Heterogeneous System." Journal of Signal Processing Systems, July 31, 2023. http://dx.doi.org/10.1007/s11265-023-01884-6.
Texto completo da fonteKemmler, Samuel, Christoph Rettinger, Ulrich Rüde, Pablo Cuéllar, and Harald Köstler. "Efficiency and scalability of fully-resolved fluid-particle simulations on heterogeneous CPU-GPU architectures." International Journal of High Performance Computing Applications, January 10, 2025. https://doi.org/10.1177/10943420241313385.
Texto completo da fonteAli, Teymoor, Deepayan Bhowmik, and Robert Nicol. "Energy aware computer vision algorithm deployment on heterogeneous architectures." Discover Electronics 2, no. 1 (2025). https://doi.org/10.1007/s44291-025-00078-7.
Texto completo da fonteShokrani Baigi, Ahmad, Abdorreza Savadi, and Mahmoud Naghibzadeh. "Optimizing sparse matrix partitioning in a heterogeneous CPU-GPU system for high-performance." Computing 107, no. 4 (2025). https://doi.org/10.1007/s00607-025-01456-5.
Texto completo da fonteLin, Ning, and Venkata Dinavahi. "Exact Nonlinear Micromodeling for Fine-Grained Parallel EMT Simulation of MTDC Grid Interaction With Wind Farm." August 1, 2019. https://doi.org/10.5281/zenodo.7683216.
Texto completo da fonteTHOMAS, beatrice, Roman LE GOFF LATIMIER, Hamid BEN AHMED, Gurvan JODIN, Abdelhafid EL OUARDI, and Samir BOUAZIZ. "Optimized Cpu-Gpu Partitioning for an Admm Algorithm Applied to a Peer to Peer Energy Market." SSRN Electronic Journal, 2022. http://dx.doi.org/10.2139/ssrn.4186889.
Texto completo da fonteMu, Yifei, Ce Yu, Chao Sun, et al. "3DT-CM: A Low-complexity Cross-matching Algorithm for Large Astronomical Catalogues using 3d-tree Approach." Research in Astronomy and Astrophysics, August 8, 2023. http://dx.doi.org/10.1088/1674-4527/acee50.
Texto completo da fonteMagalhães, W. F., M. C. De Farias, H. M. Gomes, L. B. Marinho, G. S. Aguiar, and P. Silveira. "Evaluating Edge-Cloud Computing Trade-Offs for Mobile Object Detection and Classification with Deep Learning." Journal of Information and Data Management 11, no. 1 (2020). http://dx.doi.org/10.5753/jidm.2020.2026.
Texto completo da fonteSahebi, Amin, Marco Barbone, Marco Procaccini, Wayne Luk, Georgi Gaydadjiev, and Roberto Giorgi. "Distributed large-scale graph processing on FPGAs." Journal of Big Data 10, no. 1 (2023). http://dx.doi.org/10.1186/s40537-023-00756-x.
Texto completo da fonteSchmidt, Bertil, Felix Kallenborn, Alejandro Chacon, and Christian Hundt. "CUDASW++4.0: ultra-fast GPU-based Smith–Waterman protein sequence database search." BMC Bioinformatics 25, no. 1 (2024). http://dx.doi.org/10.1186/s12859-024-05965-6.
Texto completo da fonteYanamala, Rama Muni Reddy, and Muralidhar Pullakandam. "Empowering edge devices: FPGA‐based 16‐bit fixed‐point accelerator with SVD for CNN on 32‐bit memory‐limited systems." International Journal of Circuit Theory and Applications, February 13, 2024. http://dx.doi.org/10.1002/cta.3957.
Texto completo da fonteLiu, Chaoqiang, Xiaofei Liao, Long Zheng, et al. "L-FNNG: Accelerating Large-Scale KNN Graph Construction on CPU-FPGA Heterogeneous Platform." ACM Transactions on Reconfigurable Technology and Systems, March 14, 2024. http://dx.doi.org/10.1145/3652609.
Texto completo da fonteAghapour, Ehsan, Dolly Sapra, Andy Pimentel, and Anuj Pathania. "ARM-CO-UP: ARM CO operative U tilization of P rocessors." ACM Transactions on Design Automation of Electronic Systems, April 8, 2024. http://dx.doi.org/10.1145/3656472.
Texto completo da fonteVera-Parra, Nelson Enrique, Danilo Alfonso López-Sarmiento, and Cristian Alejandro Rojas-Quintero. "HETEROGENEOUS COMPUTING TO ACCELERATE THE SEARCH OF SUPER K-MERS BASED ON MINIMIZERS." International Journal of Computing, December 30, 2020, 525–32. http://dx.doi.org/10.47839/ijc.19.4.1985.
Texto completo da fonteKarp, Martin, Estela Suarez, Jan H. Meinke, et al. "Experience and analysis of scalable high-fidelity computational fluid dynamics on modular supercomputing architectures." International Journal of High Performance Computing Applications, November 28, 2024. http://dx.doi.org/10.1177/10943420241303163.
Texto completo da fonteZhang, Yajie, Ce Yu, Chao Sun, et al. "HLC2: a Highly Efficient Cross-matching Framework for Large Astronomical Catalogues on Heterogeneous Computing Environments." Monthly Notices of the Royal Astronomical Society, January 10, 2023. http://dx.doi.org/10.1093/mnras/stad067.
Texto completo da fonteLin, Ning, and Venkata Dinavahi. "Variable Time-Stepping Modular Multilevel Converter Model for Fast and Parallel Transient Simulation of Multiterminal DC Grid." September 1, 2019. https://doi.org/10.5281/zenodo.7685899.
Texto completo da fonte