Literatura científica selecionada sobre o tema "Cucumber mosaic virus Genetics"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Cucumber mosaic virus Genetics".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Artigos de revistas sobre o assunto "Cucumber mosaic virus Genetics"

1

Avgelis, A. "Cucumber Mosaic Virus on Banana in Crete." Journal of Phytopathology 120, no. 1 (September 1987): 20–24. http://dx.doi.org/10.1111/j.1439-0434.1987.tb04410.x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Ragozzino, A., and D. Stefanis. "Urospermum picroides ospite naturale del virus del mosaico del cetriolo (Cucumber mosaic virus) e del virus del mosaico dell'erba medica (Alfalfa mosaic virus)1)." Journal of Phytopathology 86, no. 1 (June 28, 2008): 27–36. http://dx.doi.org/10.1111/j.1439-0434.1976.tb04654.x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Listihani, Listihani, Dewa Gede Wiryangga Selangga, and Mimi Sutrawati. "NATURAL INFECTION OF Tobacco mosaic virus ON BUTTERNUT SQUASH IN BALI, INDONESIA." JURNAL HAMA DAN PENYAKIT TUMBUHAN TROPIKA 21, no. 2 (July 18, 2021): 116–22. http://dx.doi.org/10.23960/jhptt.221116-122.

Texto completo da fonte
Resumo:
Natural infection of Tobacco mosaic virus on butternut squash in Bali, Indonesia. Tobacco mosaic virus (TMV) was a newly emerging virus infecting cucumbers in Indonesia since 2017. The mosaic disease caused by TMV potentially caused yield loss cucumber in Java. In 2019, mosaic symptoms were observed in butternut squash plants in Bali and molecular detection using universal primer of Tobamovirus indicated the presence of TMV infection. Further research was conducted to determine molecular characteristics of TMV on butternut squash plants in Bali. Specific DNA bands of Tobamovirus were amplified
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Petrovic, Dragana, Maja Ignjatov, Zorica Nikolic, Milka Vujakovic, Mirjana Vasic, Mirjana Milosevic, and Ksenija Taski-Ajdukovic. "Occurrence and distribution of viruses infecting the bean in Serbia." Archives of Biological Sciences 62, no. 3 (2010): 595–601. http://dx.doi.org/10.2298/abs1003595p.

Texto completo da fonte
Resumo:
This work describes the incidence and distribution of the most important bean viruses in Serbia: Bean common mosaic virus (BCMV), Bean common mosaic necrosis virus (BCMNV), Bean yellow mosaic virus (BYMV), Cucumber mosaic virus (CMV) and Alfalfa mosaic virus (AMV). The viral isolates were characterized serologically and biologically. BCMV was found in the largest number of plants (30.53%), followed by BCMNV (2.67%), CMV (5.34%), and AMV (3.41%), since BYMV was not determined. Mixed viral infections were found in several samples. The RT-PCR method was used to prove that the tested isolates belo
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Walters, S. Alan. "Influence of Watermelon Mosaic Virus on Slicing Cucumber Farmgate Revenues." HortTechnology 14, no. 1 (January 2004): 144–48. http://dx.doi.org/10.21273/horttech.14.1.0144.

Texto completo da fonte
Resumo:
Watermelon mosaic virus (WMV) is often the most limiting factor to cucumber (Cucumis sativus) production in the midwestern U.S. The influence of WMV on farm-gate revenues for nine slicing cucumber (or fresh market cucumber) cultivars was determined under high WMV disease incidence during 2000 and 2001. Over the two growing seasons, most cucumber cultivars produced excessive amounts of unmarketable WMV symptomatic fruit; however, no WMV symptoms were observed on any fruit produced by `Daytona' or `Indy'. `Thunder' produced some WMV symptomatic fruit but was significantly (P ≤ 0.05) less than th
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Fisher, J. R., and S. G. P. Nameth. "Characterization of a Cucumber Mosaic Virus Isolate and Satellite RNA from the Ornamental Host Ajuga reptans `Royalty'." Journal of the American Society for Horticultural Science 128, no. 2 (March 2003): 231–37. http://dx.doi.org/10.21273/jashs.128.2.0231.

Texto completo da fonte
Resumo:
Cucumber mosaic virus (CMV) was isolated from the perennial ornamental mint, Ajuga reptans L. `Royalty', using melon aphids (Aphis gossypii Glover). The isolate and its associated satellite RNA (satRNA) were biologically and chemically characterized. The satRNA was cloned and sequenced and is 338 nucleotides long and does not induce lethal necrosis on `Rutgers' tomato (Lycopersicon esculentum Mill.) or severe chlorosis on tobacco (Nicotiana L. spp.). The virus is ≈28 to 30 nm in diameter and reacts to CMV serological subgroup I antibodies. The virus is able to infect `Black Beauty' squash (Cuc
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Walkey, D. G. A., C. M. Ward, and K. Phelps. "The reaction of lettuce (Lactuca sativa L.) cultivars to cucumber mosaic virus." Journal of Agricultural Science 105, no. 2 (October 1985): 291–97. http://dx.doi.org/10.1017/s0021859600056367.

Texto completo da fonte
Resumo:
SUMMARYAll 53 lettuce cultivars inoculated with cucumber mosaic virus became infected. Leaf mosaic symptoms were generally mild and unreliable for distinguishing degrees of resistance between cultivars. Yield reduction was the most satisfactory criterion for evaluating resistance, with reductions in individual cultivars ranging from 8 to 50%.
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Kim, Shin Je, Kyung-Hee Paek, and Byung-Dong Kim. "Delay of Disease Development in Transgenic Petunia Plants Expressing Cucumber Mosaic Virus I17N-Satellite RNA." Journal of the American Society for Horticultural Science 120, no. 2 (March 1995): 353–59. http://dx.doi.org/10.21273/jashs.120.2.353.

Texto completo da fonte
Resumo:
A cDNA clone of cucumber mosaic virus (CMV) 117 N-satellite RNA driven by the cauliflower mosaic virus (CaMV) 35S transcript promoter, was stably integrated into the genome of Petunia hybrida `Bluepicoti' tissues by Agrobacterium tumefaciens Ti plasmid-mediated transformation. Transgenic plants producing CMV satellite RNA showed delayed disease development when inoculated with CMV-Y, a helper virus for the I17N-satellite RNA. Furthermore, transgenic petunia plants showed delayed disease development against tobacco mosaic virus (TMV), a tobamovirus not related to CMV. Northern blot analysis rev
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Davino, S., S. Cugnata, and M. G. Bellardi. "Globularia nudicaulis, a new host for Cucumber mosaic virus." Plant Pathology 55, no. 4 (August 2006): 568. http://dx.doi.org/10.1111/j.1365-3059.2006.01422.x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

GERA, A., and J. COHEN. "Occurrence of cucumber mosaic virus in phlox in Israel." Plant Pathology 39, no. 3 (September 1990): 558–60. http://dx.doi.org/10.1111/j.1365-3059.1990.tb02533.x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Mais fontes

Teses / dissertações sobre o assunto "Cucumber mosaic virus Genetics"

1

Wahyuni, Wiwiek Sri. "Variation among cucumber mosaic virus (CMV) isolates and their interaction with plants." Title page, contents and summary only, 1992. http://web4.library.adelaide.edu.au/theses/09PH/09phw137.pdf.

Texto completo da fonte
Resumo:
Includes appendix containing journal publications co-authored by the author. Includes bibliographical references (leaves 130-151). Eighteen strains of Cucumber mosaic virus, including forteen from Australia, two from the USA, and two from Japan were used in this study.
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Afsharifar, Alireza. "Characterisation of minor RNAs associated with plants infected with cucumber mosaic virus." Title page, table of contents and abstract only, 1997. http://web4.library.adelaide.edu.au/theses/09PH/09pha2584.pdf.

Texto completo da fonte
Resumo:
Bibliography: leaves 127-138. This thesis studies the minor double stranded RNAs (dsRNA) and single stranded RNAs (ssRNA) which are consistently associated with plants infected with Q strain of cucumber mosaic virus (Q-CMV). The investigations are focused on the structural elucidation of new RNAs which have been observed in single stranded and double stranded RNA profiles of Q strain of CMV.
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Williams, Rhys Harold Verdon George. "Further studies on the structure and function of the cucumber mosaic virus genome : a thesis submitted to the University of Adelaide, South Australia for the degree of Doctor of Philosophy." 1988, 1988. http://web4.library.adelaide.edu.au/theses/09PH/09phw7261.pdf.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Chen, Baoshan. "Encapsidation of nucleic acids by cucumovirus coat proteins /." Title page, contents and summary only, 1991. http://web4.library.adelaide.edu.au/theses/09PH/09phc5183.pdf.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Yang, Rongchang. "Towards genetic engineering cucumber mosaic virus (CMV) resistance in lupins." Thesis, Yang, Rongchang ORCID: 0000-0003-2563-2015 (2000) Towards genetic engineering cucumber mosaic virus (CMV) resistance in lupins. PhD thesis, Murdoch University, 2000. https://researchrepository.murdoch.edu.au/id/eprint/41568/.

Texto completo da fonte
Resumo:
Cucumber mosaic virus (CMV) is a serious pathogen of many economically important crops. In Western Australia (WA), CMV is a serious disease of narrow-leafed lupin, Lupinus angustifolius, which is the main grain legume crop. There is no known natural resistance genes to CMV have been identified .in narrow-leafed lupin germplasm that can be transferred to new cultivars using classical breeding techniques. The aim of this project was to develop a series of molecular resistance constructs and to apply them to produce pathogen-derived resistance to CMV in narrow-leafed lupin. A total of nine differ
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Geering, Andrew D. W. "The epidemiology of cucumber mosaic virus in narrow-leafed lupins (Lupinus angustifolius) in South Australia." Title page, table of contents and summary only, 1992. http://web4.library.adelaide.edu.au/theses/09PH/09phg298.pdf.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Balcı, Evrim Doğanlar Sami. "Genetic characterization of cucumber mosaic virus(CMV)resistance in tomato and pepper." [s.l.]: [s.n.], 2005. http://library.iyte.edu.tr/tezler/master/biyoloji/T000388.pdf.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Tamisier, Lucie. "Adaptation des populations virales aux résistances variétales et exploitation des ressources génétiques des plantes pour contrôler cette adaptation." Thesis, Avignon, 2017. http://www.theses.fr/2017AVIG0696/document.

Texto completo da fonte
Resumo:
L’utilisation de variétés de plantes porteuses de gènes majeurs de résistance a longtemps été une solution privilégiée pour lutter contre les maladies des plantes. Cependant, la capacité des agents pathogènes à s’adapter à ces variétés après seulement quelques années de culture rend nécessaire la recherche de résistances à la fois efficaces et durables. Les objectifs de cette thèse étaient (i) d’identifier chez la plante des régions génomiques contraignant l’évolution des agents pathogènes en induisant des effets de dérive génétique et (ii) d’étudier l’impact des forces évolutives induites par
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

McQuillin, Andrew. "Aspects of cucumber mosaic virus replication." Thesis, Imperial College London, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.321682.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Tungadi, Trisna Dewi. "Cucumber mosaic virus modifies plant-aphid interactions." Thesis, University of Cambridge, 2014. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.708288.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Mais fontes

Livros sobre o assunto "Cucumber mosaic virus Genetics"

1

Boulton, Margaret I. Protein synthesis in cucumber mosaic virus infected cucumber protoplasts. Birmingham: University of Birmingham, 1985.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Wallington, Emma Jane. Studies on transgenic resistance to cucumber mosaic virus. Birmingham: University of Birmingham, 1992.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Weiland, John J. The roles of turnip yellow mosaic virus genes in virus replication. 1992.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Tsai, Ching-Hsiu. Characterization of the role of the 3' noncoding region of turnip yellow mosaic virus RNA. 1993.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Wallace, S. Ellen. Search for protein-protein interactions underlying the cis-preferential replication of turnip yellow mosaic virus. 1997.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Wallace, S. Ellen. Search for protein-protein interactions underlying the cis-preferential replication of turnip yellow mosaic virus. 1997.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Bransom, Kathryn L. Gene expression of proteins involved in replication of turnip yellow mosaic virus. 1994.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Capítulos de livros sobre o assunto "Cucumber mosaic virus Genetics"

1

Shintaku, Michael, and Peter Palukaitis. "Genetic Mapping of Cucumber Mosaic Virus." In Viral Genes and Plant Pathogenesis, 156–64. New York, NY: Springer New York, 1990. http://dx.doi.org/10.1007/978-1-4612-3424-1_16.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

García-Arenal, Fernando, José Luis Alonso-Prados, Miguel A. Aranda, José M. Malpica, and Aurora Fraile. "Mixed Infections and Genetic Exchange Occur in Natural Populations of Cucumber Mosaic Cucumovirus." In Virus-Resistant Transgenic Plants: Potential Ecological Impact, 94–99. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-662-03506-1_11.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Okada, Yoshimi. "Cucumber Green Mottle Mosaic Virus." In The Plant Viruses, 267–81. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4684-7026-0_14.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Georgieva, I. D., and E. Stoimenova. "Cytochemical Investigation of Tomato and Cucumber Pollen After Cucumber Mosaic Virus Infection." In Progress in Botanical Research, 223–26. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-5274-7_49.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Tasaki, Keisuke, Masumi Yamagishi, and Chikara Masuta. "Virus-Induced Gene Silencing in Lilies Using Cucumber Mosaic Virus Vectors." In Methods in Molecular Biology, 1–13. New York, NY: Springer US, 2020. http://dx.doi.org/10.1007/978-1-0716-0751-0_1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Baulcombe, David, Martine Devic, and Martine Jaegle. "The Molecular Biology of Satellite RNA from Cucumber Mosaic Virus." In Recognition and Response in Plant-Virus Interactions, 263–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-74164-7_13.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

García-Arenal, F., and P. Palukaitis. "Structure and Functional Relationships of Satellite RNAs of Cucumber Mosaic Virus." In Current Topics in Microbiology and Immunology, 37–63. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-662-09796-0_3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Piazzolla, P., A. M. Tamburro, and V. Renugopalakrishnan. "Structural studies of cucumber mosaic virus: Fourier transform infrared spectroscopic studies." In Proteins, 133–37. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-010-9063-6_19.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Chen, Jishuang. "Gene Cloning of Cucumber Mosaic Virus and Some Related Viral Agents." In Advanced Topics in Science and Technology in China, 1–46. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-14119-5_1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Westwood, Jack H., and John P. Carr. "Cucumber Mosaic Virus-ArabidopsisInteraction: Interplay of Virulence Strategies and Plant Responses." In Molecular Plant Immunity, 225–50. Oxford, UK: Wiley-Blackwell, 2012. http://dx.doi.org/10.1002/9781118481431.ch11.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Trabalhos de conferências sobre o assunto "Cucumber mosaic virus Genetics"

1

"Reactivation of VaSTS1 expression in transgenic Arabidopsis thaliana plants by retransformation with 2b from Cucumber mosaic virus, isolate NK." In Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 2019. http://dx.doi.org/10.18699/plantgen2019-125.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

"Reactivation of VaSTS1 expression in Arabidopsis thaliana transgenic plants by retransformation with 2b from the Cucumber Mosaic Virus isolate NK." In Current Challenges in Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences Novosibirsk State University, 2019. http://dx.doi.org/10.18699/icg-plantgen2019-45.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Shehu, Dhurata, Thanas Ruci, Mirjana Stanoevska, and Lefteri Onuzi. "IDENTIFICATION of Cucumber mosaic virus (CMV) ON KUKES DISTRICT, ALBANIA." In The 4th Global Virtual Conference. Publishing Society, 2016. http://dx.doi.org/10.18638/gv.2016.4.1.755.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Nasir, Aya Ali, and Mustafa Adhab. "A Biologically Distinct Isolate of Cucumber mosaic virus from Iraq." In 2021 Third International Sustainability and Resilience Conference: Climate Change. IEEE, 2021. http://dx.doi.org/10.1109/ieeeconf53624.2021.9668142.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Chandra, Mukesh, Pallavi Somvanshi, B. N. Mishra, and Amod Tiwari. "Genetics of Yellow Mosaic Virus Resistance in Mung bean." In 2010 IEEE International Conference on Computational Intelligence and Computing Research (ICCIC). IEEE, 2010. http://dx.doi.org/10.1109/iccic.2010.5705760.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Plotnikov, Kirill, Valeriya Ryabinina, Alevtina Khodakova, and Natalia Blazhko. "Viral Load Distribution of Cucumber Green Mottle Mosaic Virus in Leaves." In Proceedings of the International Scientific Conference The Fifth Technological Order: Prospects for the Development and Modernization of the Russian Agro-Industrial Sector (TFTS 2019). Paris, France: Atlantis Press, 2020. http://dx.doi.org/10.2991/assehr.k.200113.171.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Molad, Ori, Elisheva Smith, Neta Luria, Noa Sela, Oded Lachman, Elena Bakelman, Diana Leibman, and Aviv Dombrovsky. "Plant Disease Symptomatology: Cucumber Green Mottle Mosaic Virus (CGMMV)-Infected Cucumber Plants Exposed to Fluctuating Extreme Temperatures." In IECPS 2021. Basel Switzerland: MDPI, 2021. http://dx.doi.org/10.3390/iecps2021-11991.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Lee, Hoonsoo, Hyoun-Sub Lim, and Byoung-Kwan Cho. "Classification of cucumber green mottle mosaic virus (CGMMV) infected watermelon seeds using Raman spectroscopy." In SPIE Commercial + Scientific Sensing and Imaging, edited by Moon S. Kim, Kuanglin Chao, and Bryan A. Chin. SPIE, 2016. http://dx.doi.org/10.1117/12.2228264.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Ryabinina, Valeriya, Sergey Pashkovsky, Kirill Plotnikov, and Eugeniya Gordienko. "Dynamics of Cucumber Green Mottle Mosaic Virus Accumulation and its Association to the Disease Manifestation." In Proceedings of the International Scientific Conference The Fifth Technological Order: Prospects for the Development and Modernization of the Russian Agro-Industrial Sector (TFTS 2019). Paris, France: Atlantis Press, 2020. http://dx.doi.org/10.2991/assehr.k.200113.141.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Uda, M. N. A., C. M. Hasfalina, A. A. Samsuzana, S. Faridah, Rafidah A. R., U. Hashim, Shahrul A. B. Ariffin, and Subash C. B. Gopinath. "Determination of set potential voltages for cucumber mosaic virus detection using screen printed carbon electrode." In 11TH ASIAN CONFERENCE ON CHEMICAL SENSORS: (ACCS2015). Author(s), 2017. http://dx.doi.org/10.1063/1.4975289.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Relatórios de organizações sobre o assunto "Cucumber mosaic virus Genetics"

1

Gera, Abed, Abed Watad, P. Ueng, Hei-Ti Hsu, Kathryn Kamo, Peter Ueng, and A. Lipsky. Genetic Transformation of Flowering Bulb Crops for Virus Resistance. United States Department of Agriculture, January 2001. http://dx.doi.org/10.32747/2001.7575293.bard.

Texto completo da fonte
Resumo:
Objectives. The major aim of the proposed research was to establish an efficient and reproducible genetic transformation system for Easter lily and gladiolus using either biolistics or Agrobacterium. Transgenic plants containing pathogen-derived genes for virus resistance were to be developed and then tested for virus resistance. The proposal was originally aimed at studying cucumber mosaic virus (CMV) resistance in plants, but studies later included bean yellow mosaic virus (BYMV). Monoclonal antibodies were to be tested to determine their effectiveness in interning with virus infection and v
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Gal-On, Amit, Shou-Wei Ding, Victor P. Gaba, and Harry S. Paris. role of RNA-dependent RNA polymerase 1 in plant virus defense. United States Department of Agriculture, January 2012. http://dx.doi.org/10.32747/2012.7597919.bard.

Texto completo da fonte
Resumo:
Objectives: Our BARD proposal on the impact of RNA-dependent RNA polymerase 1 (RDR1) in plant defense against viruses was divided into four original objectives. 1. To examine whether a high level of dsRNA expression can stimulate RDR1 transcription independent of salicylic acid (SA) concentration. 2. To determine whether the high or low level of RDR1 transcript accumulation observed in virus resistant and susceptible cultivars is associated with viral resistance and susceptibility. 3. To define the biogenesis and function of RDR1-dependent endogenous siRNAs. 4. To understand why Cucumber mosai
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Valverde, Rodrigo A., Aviv Dombrovsky, and Noa Sela. Interactions between Bell pepper endornavirus and acute viruses in bell pepper and effect to the host. United States Department of Agriculture, January 2014. http://dx.doi.org/10.32747/2014.7598166.bard.

Texto completo da fonte
Resumo:
Based on the type of relationship with the host, plant viruses can be grouped as acute or persistent. Acute viruses are well studied and cause disease. In contrast, persistent viruses do not appear to affect the phenotype of the host. The genus Endornavirus contains persistent viruses that infect plants without causing visible symptoms. Infections by endornaviruses have been reported in many economically important crops, such as avocado, barley, common bean, melon, pepper, and rice. However, little is known about the effect they have on their plant hosts. The long term objective of the propose
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Whitham, Steven A., Amit Gal-On, and Victor Gaba. Post-transcriptional Regulation of Host Genes Involved with Symptom Expression in Potyviral Infections. United States Department of Agriculture, June 2012. http://dx.doi.org/10.32747/2012.7593391.bard.

Texto completo da fonte
Resumo:
Understanding how RNA viruses cause disease symptoms in their hosts is expected to provide information that can be exploited to enhance modern agriculture. The helper component-proteinase (HC-Pro) protein of potyviruses has been implicated in symptom development. Previously, we demonstrated that symptom expression is associated with binding of duplex small-interfering-RNA (duplex-siRNA) to a highly conserved FRNK amino acid motif in the HC-Pro of Zucchini yellow mosaic virus (ZYMV). This binding activity also alters host microRNA (miRNA) profiles. In Turnip mosaic virus (TuMV), which infects t
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Grumet, Rebecca, and Benjamin Raccah. Identification of Potyviral Domains Controlling Systemic Infection, Host Range and Aphid Transmission. United States Department of Agriculture, July 2000. http://dx.doi.org/10.32747/2000.7695842.bard.

Texto completo da fonte
Resumo:
Potyviruses form one of the largest and most economically important groups of plant viruses. Individual potyviruses and their isolates vary in symptom expression, host range, and ability to overcome host resistance genes. Understanding factors influencing these biological characteristics is of agricultural importance for epidemiology and deployment of resistance strategies. Cucurbit crops are subject to severe losses by several potyviruses including the highly aggressive and variable zucchini yellow mosaic virus (ZYMV). In this project we sought to investigate protein domains in ZYMV that infl
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!