Artigos de revistas sobre o tema "Dearomatization"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Dearomatization".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Zheng, Hanliang, e Xiao-Song Xue. "Recent Computational Studies on Mechanisms of Hypervalent Iodine(III)-Promoted Dearomatization of Phenols". Current Organic Chemistry 24, n.º 18 (18 de novembro de 2020): 2106–17. http://dx.doi.org/10.2174/1385272824999200620223218.
Texto completo da fonteZeidan, Nicolas, e Mark Lautens. "Migratory Insertion Strategies for Dearomatization". Synthesis 51, n.º 22 (26 de agosto de 2019): 4137–46. http://dx.doi.org/10.1055/s-0037-1611918.
Texto completo da fonteSegovia, Claire, Pierre-Antoine Nocquet, Vincent Levacher, Jean-François Brière e Sylvain Oudeyer. "Organocatalysis: A Tool of Choice for the Enantioselective Nucleophilic Dearomatization of Electron-Deficient Six-Membered Ring Azaarenium Salts". Catalysts 11, n.º 10 (18 de outubro de 2021): 1249. http://dx.doi.org/10.3390/catal11101249.
Texto completo da fontePu, Qian, Mingming Huo, Guojuan Liang, Lijuan Bai, Genhui Chen, Hongjiao Li, Peng Xiang, Hui Zhou e Jing Zhou. "Divergent oxidative dearomatization coupling reactions to construct polycyclic cyclohexadienones". Chemical Communications 58, n.º 27 (2022): 4348–51. http://dx.doi.org/10.1039/d2cc00183g.
Texto completo da fonteShi, Lili, Wenge Zhang, Shou Chen, Lele Lu, Rong Fan, Jiajing Tan e Chao Zheng. "The Role of Ortho-dearomatization Reaction in Constructing Spirocyclic Scaffolds with an All-carbon Ring Junction". Current Organic Synthesis 15, n.º 7 (16 de outubro de 2018): 904–23. http://dx.doi.org/10.2174/1570179415666180720110051.
Texto completo da fonteIsmayilova, Sabira Sabir, e Sabir Qarsh Amirov. "Dearomatization of the Kerosene Fraction: Kinetic Studies". Catalysis Research 2, n.º 2 (9 de janeiro de 2022): 1. http://dx.doi.org/10.21926/cr.2202017.
Texto completo da fonteVincent, Guillaume, Hussein Abou-Hamdan e Cyrille Kouklovsky. "Dearomatization Reactions of Indoles to Access 3D Indoline Structures". Synlett 31, n.º 18 (24 de junho de 2020): 1775–88. http://dx.doi.org/10.1055/s-0040-1707152.
Texto completo da fonteMa, Chun, Ting Zhang, Jia-Yu Zhou, Guang-Jian Mei e Feng Shi. "Catalytic asymmetric chemodivergent arylative dearomatization of tryptophols". Chemical Communications 53, n.º 89 (2017): 12124–27. http://dx.doi.org/10.1039/c7cc06547g.
Texto completo da fonteLiu, Jiarun, Jiancheng Huang, Kuiyong Jia, Tianxing Du, Changyin Zhao, Rongxiu Zhu e Xigong Liu. "Direct Oxidative Dearomatization of Indoles with Aromatic Ketones: Rapid Access to 2,2-Disubstituted Indolin-3-ones". Synthesis 52, n.º 05 (28 de novembro de 2019): 763–68. http://dx.doi.org/10.1055/s-0039-1691528.
Texto completo da fonteWengryniuk, Sarah E., e Xiao Xiao. "Recent Advances in the Selective Oxidative Dearomatization of Phenols to o-Quinones and o-Quinols with Hypervalent Iodine Reagents". Synlett 32, n.º 08 (14 de janeiro de 2021): 752–62. http://dx.doi.org/10.1055/s-0037-1610760.
Texto completo da fonteAn, Juzeng, e Marco Bandini. "Gold-catalyzed Dearomatization Reactions". CHIMIA International Journal for Chemistry 72, n.º 9 (1 de setembro de 2018): 610–13. http://dx.doi.org/10.2533/chimia.2018.610.
Texto completo da fonteSun, Wangsheng, Guofeng Li, Liang Hong e Rui Wang. "Asymmetric dearomatization of phenols". Organic & Biomolecular Chemistry 14, n.º 7 (2016): 2164–76. http://dx.doi.org/10.1039/c5ob02526e.
Texto completo da fonteLiang, Xiao-Wei, Chao Zheng e Shu-Li You. "Dearomatization through Halofunctionalization Reactions". Chemistry - A European Journal 22, n.º 34 (5 de julho de 2016): 11918–33. http://dx.doi.org/10.1002/chem.201600885.
Texto completo da fonteZhuo, Chun-Xiang, Wei Zhang e Shu-Li You. "Catalytic Asymmetric Dearomatization Reactions". Angewandte Chemie International Edition 51, n.º 51 (3 de dezembro de 2012): 12662–86. http://dx.doi.org/10.1002/anie.201204822.
Texto completo da fonteMuñiz, Kilian, e Laura Fra. "Enantioselective 4-Hydroxylation of Phenols under Chiral Organoiodine(I/III) Catalysis". Synthesis 49, n.º 13 (4 de maio de 2017): 2901–6. http://dx.doi.org/10.1055/s-0036-1588808.
Texto completo da fonteSingh, Vishwakarma, e Raghaba Sahu. "Oxidative Dearomatization and Sigmatropic 1,3-Acyl Shift in Excited State: Aromatics to Embellished cis-Hydrindanes". Synthesis 51, n.º 07 (9 de janeiro de 2019): 1633–42. http://dx.doi.org/10.1055/s-0037-1611367.
Texto completo da fonteBertuzzi, Giulio, Luca Bernardi e Mariafrancesca Fochi. "Nucleophilic Dearomatization of Activated Pyridines". Catalysts 8, n.º 12 (6 de dezembro de 2018): 632. http://dx.doi.org/10.3390/catal8120632.
Texto completo da fonteCheng, Yuan-Zheng, Zuolijun Feng, Xiao Zhang e Shu-Li You. "Visible-light induced dearomatization reactions". Chemical Society Reviews 51, n.º 6 (2022): 2145–70. http://dx.doi.org/10.1039/c9cs00311h.
Texto completo da fonteHuseynov, H. J. "Study dearomatization of kerosene by IR and UV spectral analysis". Modern Physics Letters B 35, n.º 12 (23 de fevereiro de 2021): 2150197. http://dx.doi.org/10.1142/s0217984921501979.
Texto completo da fonteOkumura, Mikiko, e David Sarlah. "Arenophile-Mediated Photochemical Dearomatization of Nonactivated Arenes". CHIMIA International Journal for Chemistry 74, n.º 7 (12 de agosto de 2020): 577–83. http://dx.doi.org/10.2533/chimia.2020.577.
Texto completo da fonteLiang, Xiao-Wei, Chuan Liu, Wei Zhang e Shu-Li You. "Asymmetric fluorinative dearomatization of tryptamine derivatives". Chemical Communications 53, n.º 40 (2017): 5531–34. http://dx.doi.org/10.1039/c7cc02419c.
Texto completo da fonteLiu, Kai, Guangyang Xu e Jiangtao Sun. "Gold-catalyzed stereoselective dearomatization/metal-free aerobic oxidation: access to 3-substituted indolines/oxindoles". Chemical Science 9, n.º 3 (2018): 634–39. http://dx.doi.org/10.1039/c7sc04086e.
Texto completo da fonteWertjes, William C., Emma H. Southgate e David Sarlah. "Recent advances in chemical dearomatization of nonactivated arenes". Chemical Society Reviews 47, n.º 21 (2018): 7996–8017. http://dx.doi.org/10.1039/c8cs00389k.
Texto completo da fonteWang, Yang, Qiu-Yu Wu, Tian-Hua Lai, Kai-Jun Zheng, Ling-Bo Qu e Donghui Wei. "Prediction on the origin of selectivities of NHC-catalyzed asymmetric dearomatization (CADA) reactions". Catalysis Science & Technology 9, n.º 2 (2019): 465–76. http://dx.doi.org/10.1039/c8cy02238k.
Texto completo da fonteZheng, Chao, e Shu-Li You. "Advances in Catalytic Asymmetric Dearomatization". ACS Central Science 7, n.º 3 (22 de fevereiro de 2021): 432–44. http://dx.doi.org/10.1021/acscentsci.0c01651.
Texto completo da fonteHiroto, Satoru. "Intermolecular Asymmetric Dearomatization of Phenols". Journal of Synthetic Organic Chemistry, Japan 72, n.º 2 (2014): 181–82. http://dx.doi.org/10.5059/yukigoseikyokaishi.72.181.
Texto completo da fonteRamachandran, Gunasekar, e Kulathu Sathiyanarayanan. "Dearomatization Strategies of Heteroaromatic Compounds". Current Organocatalysis 2, n.º 1 (25 de fevereiro de 2015): 14–26. http://dx.doi.org/10.2174/2213337201666141110222735.
Texto completo da fonteSiddiqi, Zohaib, e David Sarlah. "Electrochemical Dearomatization of Commodity Polymers". Journal of the American Chemical Society 143, n.º 50 (10 de dezembro de 2021): 21264–69. http://dx.doi.org/10.1021/jacs.1c11546.
Texto completo da fonteAzpilcueta-Nicolas, Carlos R., e Jean-Philip Lumb. "Bioinspired dearomatization of DBCOD lignans". Trends in Chemistry 3, n.º 7 (julho de 2021): 603–4. http://dx.doi.org/10.1016/j.trechm.2021.04.002.
Texto completo da fontePigge, F., J. Coniglio e R. Dalvi. "Dearomatization Route to Cyclohexadienone Spirolactams". Synfacts 2006, n.º 6 (junho de 2006): 0549. http://dx.doi.org/10.1055/s-2006-934466.
Texto completo da fonteWilde, Justin H., Jeffery T. Myers, Diane A. Dickie e W. Dean Harman. "Molybdenum-Promoted Dearomatization of Pyridines". Organometallics 39, n.º 8 (27 de março de 2020): 1288–98. http://dx.doi.org/10.1021/acs.organomet.0c00047.
Texto completo da fontePape, Andrew R., Krishna P. Kaliappan e E. Peter Kündig. "Transition-Metal-Mediated Dearomatization Reactions". Chemical Reviews 100, n.º 8 (agosto de 2000): 2917–40. http://dx.doi.org/10.1021/cr9902852.
Texto completo da fonteEliasen, Anders M., Mitchell Christy, Karin R. Claussen, Ronald Besandre, Randal P. Thedford e Dionicio Siegel. "Dearomatization Reactions Using Phthaloyl Peroxide". Organic Letters 17, n.º 18 (setembro de 2015): 4420–23. http://dx.doi.org/10.1021/acs.orglett.5b02008.
Texto completo da fonteFischer, Theresa, Julia Bamberger e Olga García Mancheño. "Asymmetric nucleophilic dearomatization of diazarenes by anion-binding catalysis". Organic & Biomolecular Chemistry 14, n.º 24 (2016): 5794–802. http://dx.doi.org/10.1039/c6ob00248j.
Texto completo da fonteFlanigan, Darrin M., e Tomislav Rovis. "Enantioselective N-heterocyclic carbene-catalyzed nucleophilic dearomatization of alkyl pyridiniums". Chemical Science 8, n.º 9 (2017): 6566–69. http://dx.doi.org/10.1039/c7sc02648j.
Texto completo da fonteGeyer, F. L., S. Schmid, V. Brosius, N. M. Bojanowski, G. Bollmann, K. Brödner e U. H. F. Bunz. "Pentacene based Onsager crosses". Chemical Communications 52, n.º 33 (2016): 5702–5. http://dx.doi.org/10.1039/c6cc01029f.
Texto completo da fonteXia, Zi-Lei, Qing-Feng Xu-Xu, Chao Zheng e Shu-Li You. "Chiral phosphoric acid-catalyzed asymmetric dearomatization reactions". Chemical Society Reviews 49, n.º 1 (2020): 286–300. http://dx.doi.org/10.1039/c8cs00436f.
Texto completo da fonteWang, Yue, Qiuqin He e Renhua Fan. "Facile synthesis of 4-acetoxyindoles via PhI(OAc)2-mediated dearomatization of 2-alkynylanilines". Organic Chemistry Frontiers 8, n.º 12 (2021): 3004–7. http://dx.doi.org/10.1039/d1qo00358e.
Texto completo da fonteLiu, Xigong, Xue Yan, Yingde Tang, Cheng-Shi Jiang, Jin-Hai Yu, Kaiming Wang e Hua Zhang. "Direct oxidative dearomatization of indoles: access to structurally diverse 2,2-disubstituted indolin-3-ones". Chemical Communications 55, n.º 46 (2019): 6535–38. http://dx.doi.org/10.1039/c9cc02956g.
Texto completo da fonteLiang, Lei, Hong-Ying Niu, Dong-Chao Wang, Xin-He Yang, Gui-Rong Qu e Hai-Ming Guo. "Facile synthesis of chiral [2,3]-fused hydrobenzofuran via asymmetric Cu(i)-catalyzed dearomative 1,3-dipolar cycloaddition". Chemical Communications 55, n.º 4 (2019): 553–56. http://dx.doi.org/10.1039/c8cc09226e.
Texto completo da fonteHuang, Xin, Yage Zhang, Weijian Liang, Qifeng Zhang, Yaling Zhan, Lichun Kong e Bo Peng. "Dearomatization of aryl sulfoxides: a switch between mono- and dual-difluoroalkylation". Chemical Science 11, n.º 11 (2020): 3048–53. http://dx.doi.org/10.1039/d0sc00244e.
Texto completo da fonteZhang, Ziying, Huabin Han, Lele Wang, Zhanwei Bu, Yan Xie e Qilin Wang. "Construction of bridged polycycles through dearomatization strategies". Organic & Biomolecular Chemistry 19, n.º 18 (2021): 3960–82. http://dx.doi.org/10.1039/d1ob00096a.
Texto completo da fonteDing, Qiuping, Xiaoli Zhou e Renhua Fan. "Recent advances in dearomatization of heteroaromatic compounds". Org. Biomol. Chem. 12, n.º 27 (2014): 4807–15. http://dx.doi.org/10.1039/c4ob00371c.
Texto completo da fonteKündig, E. P., Rita Cannas, C. H. Fabritius, Gabriele Grossheimann, Mikhail Kondratenko, Mundruppady Laxmisha, S. Pache et al. "Stereoselective chromium- and molybdenum-mediated transformations of arenes". Pure and Applied Chemistry 76, n.º 3 (1 de janeiro de 2004): 689–95. http://dx.doi.org/10.1351/pac200476030689.
Texto completo da fonteZhang, Yan, Chanchan Ma, Julia Struwe, Jian Feng, Gangguo Zhu e Lutz Ackermann. "Electrooxidative dearomatization of biaryls: synthesis of tri- and difluoromethylated spiro[5.5]trienones". Chemical Science 12, n.º 29 (2021): 10092–96. http://dx.doi.org/10.1039/d1sc02682h.
Texto completo da fonteHao, Er-Jun, Dan-Dan Fu, Dong-Chao Wang, Tao Zhang, Gui-Rong Qu, Gong-Xin Li, Yu Lan e Hai-Ming Guo. "Chemoselective asymmetric dearomative [3 + 2] cycloaddition reactions of purines with aminocyclopropanes". Organic Chemistry Frontiers 6, n.º 6 (2019): 863–67. http://dx.doi.org/10.1039/c9qo00039a.
Texto completo da fonteLiu, Chuan, Qin Yin, Li-Xin Dai e Shu-Li You. "Synthesis of pyrroloindolines and furoindolines via cascade dearomatization of indole derivatives with carbenium ion". Chemical Communications 51, n.º 27 (2015): 5971–74. http://dx.doi.org/10.1039/c5cc00780a.
Texto completo da fonteJayaraman, Arumugam, Luis C. Misal Castro, Vincent Desrosiers e Frédéric-Georges Fontaine. "Metal-free borylative dearomatization of indoles: exploring the divergent reactivity of aminoborane C–H borylation catalysts". Chemical Science 9, n.º 22 (2018): 5057–63. http://dx.doi.org/10.1039/c8sc01093e.
Texto completo da fonteZheng, Chao, e Shu-Li You. "Catalytic asymmetric dearomatization (CADA) reaction-enabled total synthesis of indole-based natural products". Natural Product Reports 36, n.º 11 (2019): 1589–605. http://dx.doi.org/10.1039/c8np00098k.
Texto completo da fonteWu, Zijun, e Jian Wang. "A tandem dearomatization/rearomatization strategy: enantioselective N-heterocyclic carbene-catalyzed α-arylation". Chemical Science 10, n.º 8 (2019): 2501–6. http://dx.doi.org/10.1039/c8sc04601h.
Texto completo da fonte