Siga este link para ver outros tipos de publicações sobre o tema: Dearomatization.

Artigos de revistas sobre o tema "Dearomatization"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Dearomatization".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

Zheng, Hanliang, e Xiao-Song Xue. "Recent Computational Studies on Mechanisms of Hypervalent Iodine(III)-Promoted Dearomatization of Phenols". Current Organic Chemistry 24, n.º 18 (18 de novembro de 2020): 2106–17. http://dx.doi.org/10.2174/1385272824999200620223218.

Texto completo da fonte
Resumo:
Hypervalent iodine-promoted dearomatization of phenols has received intense attention. This mini-review summarizes recent computational mechanistic studies of phenolic dearomatizations promoted by hypervalent iodine(III) reagents or catalysts. The first part of this review describes mechanisms of racemic dearomatization of phenols, paying special attention to the associative and dissociative pathways. The second part focuses on mechanisms and selectivities of diastereo- or enantio-selective dearomatization of phenols.
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Zeidan, Nicolas, e Mark Lautens. "Migratory Insertion Strategies for Dearomatization". Synthesis 51, n.º 22 (26 de agosto de 2019): 4137–46. http://dx.doi.org/10.1055/s-0037-1611918.

Texto completo da fonte
Resumo:
Development of strategies for molecule functionalization by dearomatization has surged in the last two decades. The benefits of overcoming the resonance stabilization energy outweigh the cost; diverse compounds could be accessed in a short number of steps. One approach that has been of interest in recent years is the dearomatization of indoles and other (hetero)aromatic compounds by migratory insertion. The chiral σ-bond palladium intermediate could be reduced or trapped by a second functionalization. In this short review we will summarize the recently discovered reactions from our group and others in this field of metal-catalyzed dearomatizations by migratory insertion.1 Introduction2 Monofunctionalizations: Heck and Reductive Heck Reactions2.1 N-Tethered Heterocycles2.2 Non-N-tethered Heterocycles2.3 Non-heterocycles3 Dearomative Difunctionalizations: Interrupted Heck Reaction3.1 N-Tethered Heterocycles3.2 Non-N-tethered Heterocycles4 Conclusion
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Segovia, Claire, Pierre-Antoine Nocquet, Vincent Levacher, Jean-François Brière e Sylvain Oudeyer. "Organocatalysis: A Tool of Choice for the Enantioselective Nucleophilic Dearomatization of Electron-Deficient Six-Membered Ring Azaarenium Salts". Catalysts 11, n.º 10 (18 de outubro de 2021): 1249. http://dx.doi.org/10.3390/catal11101249.

Texto completo da fonte
Resumo:
Nucleophilic dearomatization of azaarenium salts is a powerful strategy to access 3D scaffolds of interest from easily accessible planar aromatic azaarene compounds. Moreover, this approach yields complex dihydroazaarenes by allowing the functionalization of the scaffold simultaneously to the dearomatization step. On the other side, organocatalysis is nowadays recognized as one of the pillars of the asymmetric catalysis field of research and is well-known to afford a high level of enantioselectivity for a myriad of transformations thanks to well-organized transition states resulting from low-energy interactions (electrostatic and/or H-bonding interactions…). Consequently, in the last fifteen years, organocatalysis has met great success in nucleophilic dearomatization of azaarenium salts. This review summarizes the work achieved up to date in the field of organocatalyzed nucleophilic dearomatization of azaarenium salts (mainly pyridinium, quinolinium, quinolinium and acridinium salts). A classification by organocatalytic mode of activation will be disclosed by shedding light on their related advantages and drawbacks. The versatility of the dearomatization approach will also be demonstrated by discussing several chemical transformations of the resulting dihydroazaarenes towards the synthesis of structurally complex compounds.
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Pu, Qian, Mingming Huo, Guojuan Liang, Lijuan Bai, Genhui Chen, Hongjiao Li, Peng Xiang, Hui Zhou e Jing Zhou. "Divergent oxidative dearomatization coupling reactions to construct polycyclic cyclohexadienones". Chemical Communications 58, n.º 27 (2022): 4348–51. http://dx.doi.org/10.1039/d2cc00183g.

Texto completo da fonte
Resumo:
Divergent oxidative dearomatization coupling reactions, in which the chemoselectivity is controlled by catalysts and bases, are reported. Our method marks a novel copper- and palladium-catalyzed C–H oxidative dearomatization of phenolic derivatives.
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Shi, Lili, Wenge Zhang, Shou Chen, Lele Lu, Rong Fan, Jiajing Tan e Chao Zheng. "The Role of Ortho-dearomatization Reaction in Constructing Spirocyclic Scaffolds with an All-carbon Ring Junction". Current Organic Synthesis 15, n.º 7 (16 de outubro de 2018): 904–23. http://dx.doi.org/10.2174/1570179415666180720110051.

Texto completo da fonte
Resumo:
Background: Spiro skeleton is an important structural motif in natural products, usually accounting for their formidable architectures and remarkable biological profiles. Recent advances demonstrated that a diverse range of scenarios held the promise for the assembly of spirocenter based on ortho-dearomatization strategy. In this article, we describe the latest development of ortho-dearomatization reaction in constructing spirocyclic scaffolds with an all-carbon ring junction from a methodological standpoint. Objective: The review focuses on recent progress in the area of ortho-dearomatization reaction in constructing spirocyclic scaffolds with an all-carbon ring junction. Conclusion: In summary, we have summarized the capability of ortho-dearomatization reaction to construct spirocyclic skeleton, a common structural pattern found at the core of numerous natural products with broad structural diversities and important bioactivities. Success in this area will benefit not only the area of synthetic chemistry through methodological development, but also medicinal chemistry and chemical biology by providing access to rapid assembly of bioactive compounds’ core scaffolds.
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Ismayilova, Sabira Sabir, e Sabir Qarsh Amirov. "Dearomatization of the Kerosene Fraction: Kinetic Studies". Catalysis Research 2, n.º 2 (9 de janeiro de 2022): 1. http://dx.doi.org/10.21926/cr.2202017.

Texto completo da fonte
Resumo:
The kinetics of dearomatization of a kerosene fraction processed using a zeolite catalyst (0.9 HZSM-5) at different temperatures (160-200°C), the molar ratio between the aromatic hydrocarbons present in the kerosene fraction and n-decene (1:(0.5-4)), and the reaction time (1-3 h) were studied. Based on the obtained data, a kinetic model for kerosene dearomatization is proposed. It is assumed that the single-center Riedel mechanism is followed. The stage associated with the interaction between n-decene adsorbed on the surface of the catalyst containing aromatic compounds and n-decene present in the volume is identified as the limiting sage of the dearomatization process.
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Vincent, Guillaume, Hussein Abou-Hamdan e Cyrille Kouklovsky. "Dearomatization Reactions of Indoles to Access 3D Indoline Structures". Synlett 31, n.º 18 (24 de junho de 2020): 1775–88. http://dx.doi.org/10.1055/s-0040-1707152.

Texto completo da fonte
Resumo:
This Account summarizes our involvement in the development of dearomatization reactions of indoles that has for origin a total synthesis problematic. We present the effort from our group to obtain 3D-indolines scaffold from the umpolung of N-acyl indoles via activation with FeCl3 to the oxidative spirocyclizations of N-EWG indoles and via the use of electrochemistry.1 Introduction2 Activation of N-Acyl Indoles with FeCl3 2.1 Hydroarylation of N-Acyl Indoles2.2 Difunctionalization of N-Acyl Indoles3 Radical-Mediated Dearomatization of Indoles for the Synthesis of Spirocyclic Indolines4 Electrochemical Dearomatization of Indoles4.1 Direct Electrochemical Oxidation of Indoles4.2 Indirect Electrochemical Oxidation of Indoles5 Conclusion
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Ma, Chun, Ting Zhang, Jia-Yu Zhou, Guang-Jian Mei e Feng Shi. "Catalytic asymmetric chemodivergent arylative dearomatization of tryptophols". Chemical Communications 53, n.º 89 (2017): 12124–27. http://dx.doi.org/10.1039/c7cc06547g.

Texto completo da fonte
Resumo:
The first catalytic asymmetric arylative dearomatization of tryptophols has been established. By using quinone imine ketals as aryl group surrogates and modulating the reaction conditions, the cascade reaction of tryptophols with quinone imine ketals afforded two series of arylative dearomatization products in generally high yields, and excellent diastereo- and enantioselectivities.
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Liu, Jiarun, Jiancheng Huang, Kuiyong Jia, Tianxing Du, Changyin Zhao, Rongxiu Zhu e Xigong Liu. "Direct Oxidative Dearomatization of Indoles with Aromatic Ketones: Rapid Access to 2,2-Disubstituted Indolin-3-ones". Synthesis 52, n.º 05 (28 de novembro de 2019): 763–68. http://dx.doi.org/10.1055/s-0039-1691528.

Texto completo da fonte
Resumo:
A metal-free oxidative dearomatization of indoles with aromatic ketones mediated by TEMPO oxoammonium salt is described. The dearomatization proceeds smoothly and displays a broad substrate scope with respect to both indoles and aromatic ketones in the presence of H2SO4, affording the corresponding 2,2-disubstituted indolin-3-ones in good yields.
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Wengryniuk, Sarah E., e Xiao Xiao. "Recent Advances in the Selective Oxidative Dearomatization of Phenols to o-Quinones and o-Quinols with Hypervalent Iodine Reagents". Synlett 32, n.º 08 (14 de janeiro de 2021): 752–62. http://dx.doi.org/10.1055/s-0037-1610760.

Texto completo da fonte
Resumo:
Abstract ortho-Quinones are valuable molecular frameworks with diverse applications across biology, materials, organic synthesis, catalysis, and coordination chemistry. Despite their broad utility, their synthesis remains challenging, in particular via the direct oxidation of readily accessible phenols, due to the need to affect regioselective ortho oxidation coupled with the sensitivity of the resulting o-quinone products. The perspective looks at the emergence of I(V) hypervalent iodine reagents as an effective class of oxidants for regioselective o-quinone synthesis. The application of these reagents in regioselective phenol oxidation to both o-quinones and o-quinols will be discussed, including a recent report from our laboratory on the first method for the oxidation of electron-deficient phenols using a novel nitrogen-ligated I(V) reagent. Also included are select examples of total syntheses utilizing this methodology as well as recent advancements in chiral I(V) reagent design for asymmetric phenol dearomatization.1 Introduction2 I(V): Hypervalent Iodine Reagents3 I(V)-Mediated Dearomatization to o-Quinones4 Bisnitrogen-Ligated I(V) Reagents: ortho Dearomatization of Electron-Poor Phenols5 I(V)-Mediated Dearomatization to o-Quinols6 Conclusion and Outlook
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

An, Juzeng, e Marco Bandini. "Gold-catalyzed Dearomatization Reactions". CHIMIA International Journal for Chemistry 72, n.º 9 (1 de setembro de 2018): 610–13. http://dx.doi.org/10.2533/chimia.2018.610.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Sun, Wangsheng, Guofeng Li, Liang Hong e Rui Wang. "Asymmetric dearomatization of phenols". Organic & Biomolecular Chemistry 14, n.º 7 (2016): 2164–76. http://dx.doi.org/10.1039/c5ob02526e.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Liang, Xiao-Wei, Chao Zheng e Shu-Li You. "Dearomatization through Halofunctionalization Reactions". Chemistry - A European Journal 22, n.º 34 (5 de julho de 2016): 11918–33. http://dx.doi.org/10.1002/chem.201600885.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Zhuo, Chun-Xiang, Wei Zhang e Shu-Li You. "Catalytic Asymmetric Dearomatization Reactions". Angewandte Chemie International Edition 51, n.º 51 (3 de dezembro de 2012): 12662–86. http://dx.doi.org/10.1002/anie.201204822.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Muñiz, Kilian, e Laura Fra. "Enantioselective 4-Hydroxylation of Phenols under Chiral Organoiodine(I/III) Catalysis". Synthesis 49, n.º 13 (4 de maio de 2017): 2901–6. http://dx.doi.org/10.1055/s-0036-1588808.

Texto completo da fonte
Resumo:
A procedure for the intermolecular enantioselective dearomatization of phenols under chiral (I/III) catalysis is reported. This protocol employs 3-chloroperoxybenzoic acid (m-CPBA) as the terminal oxidant together with a defined C 2-symmetric aryl iodide as the effective organocatalyst. This enantioselective reaction proceeds with complete selectivity under mild conditions and enables the hydroxylative dearomatization of a number of phenols to give the corresponding p-quinol products with up to 50% ee.
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Singh, Vishwakarma, e Raghaba Sahu. "Oxidative Dearomatization and Sigmatropic 1,3-Acyl Shift in Excited State: Aromatics to Embellished cis-Hydrindanes". Synthesis 51, n.º 07 (9 de janeiro de 2019): 1633–42. http://dx.doi.org/10.1055/s-0037-1611367.

Texto completo da fonte
Resumo:
A stereoselective synthetic route to embellished cis-hydrindanes from simple aromatic precursors is described. Oxidative dearomatization, ring expansion, and photochemical 1,3-acyl shift are the key features of our approach. Oxidative dearomatization of o-(hydroxymethyl)phenols followed by π4s + π2s cycloaddition furnishes bicyclo[2.2.2]octanes with contiguous keto epoxide groups, which upon ring expansion lead to bicyclo[3.2.2]nonanes endowed with a β,γ-enone chromophore. Unbridging of bicyclo[3.2.2]nonanes upon singlet excitation furnishes embellished cis-hydrindanes.
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Bertuzzi, Giulio, Luca Bernardi e Mariafrancesca Fochi. "Nucleophilic Dearomatization of Activated Pyridines". Catalysts 8, n.º 12 (6 de dezembro de 2018): 632. http://dx.doi.org/10.3390/catal8120632.

Texto completo da fonte
Resumo:
Amongst nitrogen heterocycles of different ring sizes and oxidation statuses, dihydropyridines (DHP) occupy a prominent role due to their synthetic versatility and occurrence in medicinally relevant compounds. One of the most straightforward synthetic approaches to polysubstituted DHP derivatives is provided by nucleophilic dearomatization of readily assembled pyridines. In this article, we collect and summarize nucleophilic dearomatization reactions of - pyridines reported in the literature between 2010 and mid-2018, complementing and updating previous reviews published in the early 2010s dedicated to various aspects of pyridine chemistry. Since functionalization of the pyridine nitrogen, rendering a (transient) pyridinium ion, is usually required to render the pyridine nucleus sufficiently electrophilic to suffer the attack of a nucleophile, the material is organized according to the type of N-functionalization. A variety of nucleophilic species (organometallic reagents, enolates, heteroaromatics, umpoled aldehydes) can be productively engaged in pyridine dearomatization reactions, including catalytic asymmetric implementations, providing useful and efficient synthetic platforms to (enantioenriched) DHPs. Conversely, pyridine nitrogen functionalization can also lead to pyridinium ylides. These dipolar species can undergo a variety of dipolar cycloaddition reactions with electron-poor dipolarophiles, affording polycyclic frameworks and embedding a DHP moiety in their structures.
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Cheng, Yuan-Zheng, Zuolijun Feng, Xiao Zhang e Shu-Li You. "Visible-light induced dearomatization reactions". Chemical Society Reviews 51, n.º 6 (2022): 2145–70. http://dx.doi.org/10.1039/c9cs00311h.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Huseynov, H. J. "Study dearomatization of kerosene by IR and UV spectral analysis". Modern Physics Letters B 35, n.º 12 (23 de fevereiro de 2021): 2150197. http://dx.doi.org/10.1142/s0217984921501979.

Texto completo da fonte
Resumo:
This work is devoted to study the extraction dearomatization of the kerosene fraction using ionic liquids synthesized on the basis of formic acid and morpholine, as well as acetic acid and diethylamine as a selective solvent. The influence of various factors on the selective purification process has been investigated and the conditions for dearomatization of kerosene have been determined. The group hydrocarbon composition of the dearomatized kerosene raffinate samples by ion-liquid extraction was determined by IR and UV spectral analysis.
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Okumura, Mikiko, e David Sarlah. "Arenophile-Mediated Photochemical Dearomatization of Nonactivated Arenes". CHIMIA International Journal for Chemistry 74, n.º 7 (12 de agosto de 2020): 577–83. http://dx.doi.org/10.2533/chimia.2020.577.

Texto completo da fonte
Resumo:
Aromatic compounds are one of the most abundant classes of organic molecules and find utility as precursors for alicyclic hydrocarbon building blocks. While many established dearomatization reactions are exceptionally powerful, dearomatization with concurrent introduction of functionality, i.e. dearomative functionalization, is still a largely underdeveloped field. This review aims to provide an overview of our recent efforts and progress in the development of dearomative functionalization of simple and nonactivated arenes using arenophile-arene cycloaddition platform. These cycloadducts, formed via a visible-light-mediated [4+2]-photocycloaddition, can be elaborated in situ through olefin chemistry or transition-metal-catalyzed ring-opening with carbon-, nitrogen-, and oxygen-based nucleophiles, providing access to diverse structures with functional and stereochemical complexity. Moreover, the dearomatized products are amenable to further elaborations, which effectively install other functionalities onto the resulting alicyclic carbocycles. The utility of the arenophile-mediated dearomatization methods are also highlighted by the facile syntheses of natural products and bioactive compounds through novel disconnections.
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Liang, Xiao-Wei, Chuan Liu, Wei Zhang e Shu-Li You. "Asymmetric fluorinative dearomatization of tryptamine derivatives". Chemical Communications 53, n.º 40 (2017): 5531–34. http://dx.doi.org/10.1039/c7cc02419c.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Liu, Kai, Guangyang Xu e Jiangtao Sun. "Gold-catalyzed stereoselective dearomatization/metal-free aerobic oxidation: access to 3-substituted indolines/oxindoles". Chemical Science 9, n.º 3 (2018): 634–39. http://dx.doi.org/10.1039/c7sc04086e.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Wertjes, William C., Emma H. Southgate e David Sarlah. "Recent advances in chemical dearomatization of nonactivated arenes". Chemical Society Reviews 47, n.º 21 (2018): 7996–8017. http://dx.doi.org/10.1039/c8cs00389k.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Wang, Yang, Qiu-Yu Wu, Tian-Hua Lai, Kai-Jun Zheng, Ling-Bo Qu e Donghui Wei. "Prediction on the origin of selectivities of NHC-catalyzed asymmetric dearomatization (CADA) reactions". Catalysis Science & Technology 9, n.º 2 (2019): 465–76. http://dx.doi.org/10.1039/c8cy02238k.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Zheng, Chao, e Shu-Li You. "Advances in Catalytic Asymmetric Dearomatization". ACS Central Science 7, n.º 3 (22 de fevereiro de 2021): 432–44. http://dx.doi.org/10.1021/acscentsci.0c01651.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

Hiroto, Satoru. "Intermolecular Asymmetric Dearomatization of Phenols". Journal of Synthetic Organic Chemistry, Japan 72, n.º 2 (2014): 181–82. http://dx.doi.org/10.5059/yukigoseikyokaishi.72.181.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Ramachandran, Gunasekar, e Kulathu Sathiyanarayanan. "Dearomatization Strategies of Heteroaromatic Compounds". Current Organocatalysis 2, n.º 1 (25 de fevereiro de 2015): 14–26. http://dx.doi.org/10.2174/2213337201666141110222735.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

Siddiqi, Zohaib, e David Sarlah. "Electrochemical Dearomatization of Commodity Polymers". Journal of the American Chemical Society 143, n.º 50 (10 de dezembro de 2021): 21264–69. http://dx.doi.org/10.1021/jacs.1c11546.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Azpilcueta-Nicolas, Carlos R., e Jean-Philip Lumb. "Bioinspired dearomatization of DBCOD lignans". Trends in Chemistry 3, n.º 7 (julho de 2021): 603–4. http://dx.doi.org/10.1016/j.trechm.2021.04.002.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Pigge, F., J. Coniglio e R. Dalvi. "Dearomatization Route to Cyclohexadienone Spirolactams". Synfacts 2006, n.º 6 (junho de 2006): 0549. http://dx.doi.org/10.1055/s-2006-934466.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Wilde, Justin H., Jeffery T. Myers, Diane A. Dickie e W. Dean Harman. "Molybdenum-Promoted Dearomatization of Pyridines". Organometallics 39, n.º 8 (27 de março de 2020): 1288–98. http://dx.doi.org/10.1021/acs.organomet.0c00047.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Pape, Andrew R., Krishna P. Kaliappan e E. Peter Kündig. "Transition-Metal-Mediated Dearomatization Reactions". Chemical Reviews 100, n.º 8 (agosto de 2000): 2917–40. http://dx.doi.org/10.1021/cr9902852.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Eliasen, Anders M., Mitchell Christy, Karin R. Claussen, Ronald Besandre, Randal P. Thedford e Dionicio Siegel. "Dearomatization Reactions Using Phthaloyl Peroxide". Organic Letters 17, n.º 18 (setembro de 2015): 4420–23. http://dx.doi.org/10.1021/acs.orglett.5b02008.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Fischer, Theresa, Julia Bamberger e Olga García Mancheño. "Asymmetric nucleophilic dearomatization of diazarenes by anion-binding catalysis". Organic & Biomolecular Chemistry 14, n.º 24 (2016): 5794–802. http://dx.doi.org/10.1039/c6ob00248j.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Flanigan, Darrin M., e Tomislav Rovis. "Enantioselective N-heterocyclic carbene-catalyzed nucleophilic dearomatization of alkyl pyridiniums". Chemical Science 8, n.º 9 (2017): 6566–69. http://dx.doi.org/10.1039/c7sc02648j.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

Geyer, F. L., S. Schmid, V. Brosius, N. M. Bojanowski, G. Bollmann, K. Brödner e U. H. F. Bunz. "Pentacene based Onsager crosses". Chemical Communications 52, n.º 33 (2016): 5702–5. http://dx.doi.org/10.1039/c6cc01029f.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

Xia, Zi-Lei, Qing-Feng Xu-Xu, Chao Zheng e Shu-Li You. "Chiral phosphoric acid-catalyzed asymmetric dearomatization reactions". Chemical Society Reviews 49, n.º 1 (2020): 286–300. http://dx.doi.org/10.1039/c8cs00436f.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

Wang, Yue, Qiuqin He e Renhua Fan. "Facile synthesis of 4-acetoxyindoles via PhI(OAc)2-mediated dearomatization of 2-alkynylanilines". Organic Chemistry Frontiers 8, n.º 12 (2021): 3004–7. http://dx.doi.org/10.1039/d1qo00358e.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Liu, Xigong, Xue Yan, Yingde Tang, Cheng-Shi Jiang, Jin-Hai Yu, Kaiming Wang e Hua Zhang. "Direct oxidative dearomatization of indoles: access to structurally diverse 2,2-disubstituted indolin-3-ones". Chemical Communications 55, n.º 46 (2019): 6535–38. http://dx.doi.org/10.1039/c9cc02956g.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Liang, Lei, Hong-Ying Niu, Dong-Chao Wang, Xin-He Yang, Gui-Rong Qu e Hai-Ming Guo. "Facile synthesis of chiral [2,3]-fused hydrobenzofuran via asymmetric Cu(i)-catalyzed dearomative 1,3-dipolar cycloaddition". Chemical Communications 55, n.º 4 (2019): 553–56. http://dx.doi.org/10.1039/c8cc09226e.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

Huang, Xin, Yage Zhang, Weijian Liang, Qifeng Zhang, Yaling Zhan, Lichun Kong e Bo Peng. "Dearomatization of aryl sulfoxides: a switch between mono- and dual-difluoroalkylation". Chemical Science 11, n.º 11 (2020): 3048–53. http://dx.doi.org/10.1039/d0sc00244e.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

Zhang, Ziying, Huabin Han, Lele Wang, Zhanwei Bu, Yan Xie e Qilin Wang. "Construction of bridged polycycles through dearomatization strategies". Organic & Biomolecular Chemistry 19, n.º 18 (2021): 3960–82. http://dx.doi.org/10.1039/d1ob00096a.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

Ding, Qiuping, Xiaoli Zhou e Renhua Fan. "Recent advances in dearomatization of heteroaromatic compounds". Org. Biomol. Chem. 12, n.º 27 (2014): 4807–15. http://dx.doi.org/10.1039/c4ob00371c.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

Kündig, E. P., Rita Cannas, C. H. Fabritius, Gabriele Grossheimann, Mikhail Kondratenko, Mundruppady Laxmisha, S. Pache et al. "Stereoselective chromium- and molybdenum-mediated transformations of arenes". Pure and Applied Chemistry 76, n.º 3 (1 de janeiro de 2004): 689–95. http://dx.doi.org/10.1351/pac200476030689.

Texto completo da fonte
Resumo:
Tricarbonylchromium-mediated dearomatization provides a rapid access to substituted cyclohexadienes. Efficient asymmetric routes to planar chiral arene complexes and to substituted cyclohexadienes have been developed. The article sums up the main features of this chemistry. Highly enantiomerically enriched ortho-substituted benzaldehyde complexes are accessible via asymmetric lithiation followed by trapping with electrophiles. In different solvents, the trimethylsilyl complex exhibits [alpha] values ranging from −174 to +108 for the same enantiomer. Details of two asymmetric syntheses of natural products are given: the alkaloid lasubine I starting from a highly enantiomerically enriched planar chiral arene complex and the marine furanosesquiterpene acetoxytubipofuran. The latter is assembled via asymmetric dearomatization of a benzaldehyde imine complex. Other key steps include an Eschenmoser–Claisen rearrangement and a regio- and diastereoselective Pd-catalyzed allylic substitution. The final section deals with labile arene metal complexes. For the first time, dearomatization reactions mediated by the Mo(CO)3 group have been realized. The reactions show strong analogies to the Cr(CO)3-mediated reactions, but exhibit also marked differences: the arene–Mo bond is stronger, but more labile, and the sequential double additions show different selectivities compared to the chromium analogs.
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

Zhang, Yan, Chanchan Ma, Julia Struwe, Jian Feng, Gangguo Zhu e Lutz Ackermann. "Electrooxidative dearomatization of biaryls: synthesis of tri- and difluoromethylated spiro[5.5]trienones". Chemical Science 12, n.º 29 (2021): 10092–96. http://dx.doi.org/10.1039/d1sc02682h.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

Hao, Er-Jun, Dan-Dan Fu, Dong-Chao Wang, Tao Zhang, Gui-Rong Qu, Gong-Xin Li, Yu Lan e Hai-Ming Guo. "Chemoselective asymmetric dearomative [3 + 2] cycloaddition reactions of purines with aminocyclopropanes". Organic Chemistry Frontiers 6, n.º 6 (2019): 863–67. http://dx.doi.org/10.1039/c9qo00039a.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

Liu, Chuan, Qin Yin, Li-Xin Dai e Shu-Li You. "Synthesis of pyrroloindolines and furoindolines via cascade dearomatization of indole derivatives with carbenium ion". Chemical Communications 51, n.º 27 (2015): 5971–74. http://dx.doi.org/10.1039/c5cc00780a.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

Jayaraman, Arumugam, Luis C. Misal Castro, Vincent Desrosiers e Frédéric-Georges Fontaine. "Metal-free borylative dearomatization of indoles: exploring the divergent reactivity of aminoborane C–H borylation catalysts". Chemical Science 9, n.º 22 (2018): 5057–63. http://dx.doi.org/10.1039/c8sc01093e.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

Zheng, Chao, e Shu-Li You. "Catalytic asymmetric dearomatization (CADA) reaction-enabled total synthesis of indole-based natural products". Natural Product Reports 36, n.º 11 (2019): 1589–605. http://dx.doi.org/10.1039/c8np00098k.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

Wu, Zijun, e Jian Wang. "A tandem dearomatization/rearomatization strategy: enantioselective N-heterocyclic carbene-catalyzed α-arylation". Chemical Science 10, n.º 8 (2019): 2501–6. http://dx.doi.org/10.1039/c8sc04601h.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia