Teses / dissertações sobre o tema "Deeplearning"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 17 melhores trabalhos (teses / dissertações) para estudos sobre o assunto "Deeplearning".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja as teses / dissertações das mais diversas áreas científicas e compile uma bibliografia correta.
Kapoor, Rishika. "Malaria Detection Using Deep Convolution Neural Network". University of Cincinnati / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1613749143868579.
Texto completo da fonteAccornero, Andrea. "Covid-19 x-ray Analisi con reti neurali". Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/24952/.
Texto completo da fonteFall, Ahmad. "Interpretability of Neural Networks applied to Electrocardiograms : Translational Applications in Cardiovascular Diseases". Electronic Thesis or Diss., Sorbonne université, 2023. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2023SORUS473.pdf.
Texto completo da fonteElectrocardiograms (ECGs) are non-invasive tools for assessing the electrical activity of the heart, they are widely used to detect cardiac abnormalities. Deep learning algorithms enable automatic detection of complex patterns in ECG data, offering significant potential for improved cardiac diagnosis. However, their adoption is hindered by a low level of trust among medical professionals and a substantial need for data to train the models. Artificial intelligence, particularly deep learning, allows for exploration of hierarchical representations of complex data, leading to a better understanding of internal interactions. Nevertheless, interpretability of the models are crucial to gain specialists’ trust and facilitate widespread implementation. This thesis aims to develop a novel interpretability algorithm for neural networks applied to ECG analysis, working in close collaboration with cardiology specialists. Our study focuses on a specific cardiac pathology, Torsades-de-Pointes (TdP). TdP is a life threatening arrhythmia associated with various factors, including medications and congenital mutations. Accurate prediction of this risk can enhance patient care and potentially save lives. We started by designing a neural network algorithm for predicting the risk of TdP using ECG data. Second, we developed a new interpretability algorithm named Evocclusion, that enables a better understanding of the neural network’s decision process. This algorithm aims to provide human readable insights into the model’s predictions, leading to increased trust among clinicians and specialists. Third, we present two main frameworks developed to improve ECG analysis and the interpretability method. A crucial aspect of ECG analysis is signal quality. Therefore, we propose a new method using a denoising autoencoder to significantly remove noise from the ECG data and partially recover the waveform from alterations. This technique improves the reliability of the input data for subsequent analysis and ensures that the neural networks have access to high quality information. We also developed neural networks to segment the ECG and extract beats, P and T waves, and QRS complexes. These segmentation results enable a deeper understanding of the ECG components and facilitate further analysis. Additionally, we provide a method to assess a quality score vector of the ECG, enabling us to focus on parts of the signal that have a good quality score. This approach ensures that the most reliable information is used for analysis and clinicians which reduces the risk of false positives and negatives. This research seeks to enhance trust in artificial intelligence, leading to better automation of complex tasks in medicine and beyond, ultimately improving patient outcomes
Alshatta, Mohammad Samer. "Real Time Gym Activity Detection using Monocular RGB Camera". Thesis, Högskolan i Halmstad, Akademin för informationsteknologi, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-41440.
Texto completo da fonteStymne, Jakob, e Odeback Oliver Welin. "Evaluation of Temporal Convolutional Networks for Nanopore DNA Sequencing". Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-295624.
Texto completo da fonteNanopore sequencing är en nyligen utvecklad metod för DNA-sekvensering som innebär att man applicerar ett konstant elektriskt fält över ett membran och translokerar enkelsträngade DNA-molekyler genom membranporer. Detta resulterar i en elektrisk signal som beror på DNA-strukturen. Målet med detta projekt är att träna och evaluera icke-kausula ”temporal convolutional networks” som ska kunna översätta denna ofiltrerade elektriska signalen till den motsvarande nukleotidsekvensen. Träningsdatan är ett urval av genomen från bakterien E. coli och viruset phage Lambda. Vi implementerade och utvärderade ett antal olika nätverksstrukturer. Ett nätverk med fem residuala block med fem faltande lager i varje block gav maximal prestation, med en precision på 76.1% på testdata. Detta resultat indikerar att ett ”temporal convolution network” skulle kunna vara ett effektivt sätt att sekvensera DNA.
Kandidatexjobb i elektroteknik 2020, KTH, Stockholm
Di, Ielsi Luca. "Analisi di serie temporali riguardanti dati energetici mediante architetture neurali profonde". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2016. http://amslaurea.unibo.it/10504/.
Texto completo da fonteIngelhag, Anders. "Samarbete mellan tekniklärare vid framtagning av undervisningsmaterial". Thesis, Högskolan i Halmstad, Akademin för lärande, humaniora och samhälle, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-33658.
Texto completo da fonteRacette, Olsén Michael. "Electrocardiographic deviation detection : Using long short-term memory recurrent neural networks to detect deviations within electrocardiographic records". Thesis, Linnéuniversitetet, Institutionen för datavetenskap (DV), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-76411.
Texto completo da fonteAntonini, Lorenzo. "Reinforcement Learning Middleware Solutions for Android-oriented Distributed Deployments". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020.
Encontre o texto completo da fonteMajtán, Martin. "Trénovatelná segmentace obrazu s použitím hlubokých neuronových sítí". Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2016. http://www.nusl.cz/ntk/nusl-241142.
Texto completo da fonteCHEN, CHIH-KUN, e 陳志焜. "Overlapped Fingerprint Separation Based on DeepLearning". Thesis, 2018. http://ndltd.ncl.edu.tw/handle/r239xa.
Texto completo da fonte開南大學
資訊學院碩士在職專班
106
Biometrics and Artificial Intelligence are important infrastructures for the development of science and technology in various countries in the future. Fingerprint Identification is the most widely used and long-term application in biometric technology. Fingerprint Identification Technology has been quite mature so far, but fingerprint identification has mostly been used to explore Single Fingerprint. Recognition, the discussion of two or more Overlapped Fingerprints is relatively rare, but overlapping fingerprints is common in many criminal cases. Overlapping fingerprints have the phenomenon that the fingerprint lines interfere or cover each other. The complexity of the overlapping fingerprints is much higher than that of a single fingerprint. The difficulty in making judgments and understanding is also relatively high. At present, the recognition of overlapping fingerprints must be based on well-trained training. The personnel manually separated the fingerprint overlapping area from the non-overlapping area, which is a problem in personnel training and processing timeliness. Since the computer defeated the world chess king, artificial intelligence is the most concerned computer technology topic now, and the most important technology of artificial intelligence is Deep Learning.The main purpose of this paper is to apply the deep learning to automatically mark the overlapped and nonoverlapped regions of overlapped fingerprints.In this way, the overlapping area and the nonoverlapped area can be separated.In the case of identification of overlapping fingerprints that can be applied in criminal cases.I hope to contribute to and help with the collection of evidence in criminal cases and the speed with which cases can be solved.
Chiu, Zhe-Nan, e 邱哲楠. "Predicting Driver Braking Action Using Multi-Layer DeepLearning Sensory Fusion". Thesis, 2018. http://ndltd.ncl.edu.tw/handle/2p3qnv.
Texto completo da fonte元智大學
資訊工程學系
106
In advanced driver assistance system (ADAS), non-timely braking action is one of the important issues because it makes drivers exposed to a terrible and dangerous driving environment. For this reason, predicting driver braking action early and accurately must appear up, which can lower the potential of unsafe driving behavior and provide drivers more time to react. In this paper, we have sensory fusion data source from inside and outside of the car and our proposed multi-layer deep learning architecture (CBL) to predict braking action, which consists of convolutional neural network (CNN) and bidirectional long short-term memory units (BL) while CNN is good at extracting driving characteristic and BL is useful for keeping time-series data. The result points that the CBL performs much better than the other two architectures: bidirectional LSTM (BL) and uni-LSTM (UL) based on the high accuracy and f-score, and it also shows leave-one-out cross validation for drivers and many interesting differences in the speed, turning and intersection from time -5s to 0s.
Pereira, João Pedro Fernandes. "Sistema de visão computacional para monitorização do protocolo de higienização hospitalar". Master's thesis, 2021. http://hdl.handle.net/10348/10425.
Texto completo da fonteO presente relatório descreve o trabalho desenvolvido no contexto do Estágio do Mestrado em Engenharia Informática da Universidade de Trás-os-Montes e Alto Douro realizado na empresa Whymob. O principal objetivo do trabalho consiste no desenvolvimento de um sistema de monitorização da desinfeção das mãos, por parte do corpo clínico em enfermarias hospitalares. O sistema proposto baseia-se em visão por computador para monitorizar o cumprimento da desinfeção hospitalar e o controlo dos 5 momentos da higienização das mãos, de maneira que seja possível combater as infeções hospitalares e, com isto, a redução do uso de antibióticos. Com este propósito, foram aplicadas técnicas de visão por computador e de deep learning, na análise de dados recolhidos por um sensor RGB-D para verificar se os funcionários hospitalares realizam a desinfeção das mãos de forma correta. A análise consiste na deteção da pose dos profissionais, deteção das mãos dos funcionários, deteção dos dispensadores de desinfetante e na identificação das categorias profissionais de cada elemento do corpo clínico. No que toca aos testes dos componentes do sistema, foi usado um cenário idêntico ao que se encontra na enfermaria hospitalar, sendo testado cada componente com um número variável de pessoas, variando esse número entre 1 e 3. Os resultados obtidos destes testes revelaram-se satisfatórios, sendo que o sistema conseguiu realizar a deteção dos elementos de interesse da enfermaria, bem como as ações realizadas por parte dos profissionais para alteração dos momentos de desinfeção.
This report describes the work carried out in the context of the master’s degree in Computer Engineering at the University of Trás-os-Montes and Alto Douro carried out at the company Whymob. The main objective of the work is the development of a system for monitoring the disinfection of hands, by the clinical staff in hospital wards. The proposed system is based on computer vision to monitor compliance with hospital disinfection and the control of the 5 moments of hand hygiene, so that it is possible to combat hospital infections and, with this, the reduction in the use of antibiotics. For this purpose, computer vision and deep learning techniques were applied in the analysis of data collected by an RGB-D sensor to verify that hospital employees perform the correct hand disinfection. The analysis consists of detecting the pose of the professionals, detecting the employees' hands, detecting the disinfectant dispensers and identifying the professional categories of each element of the clinical staff. About the testing of the system components, a scenario identical to that found in the hospital ward was used, with each component being tested with a variable number of people, varying between 1 and 3. The results obtained from these tests were revealed satisfactory, since the system was able to detect the elements of interest to the infirmary, as well as the actions taken by the professionals to change the disinfection moments.
Segebarth, Dennis. "Evaluation and validation of deep learning strategies for bioimage analyses". Doctoral thesis, 2021. https://doi.org/10.25972/OPUS-24372.
Texto completo da fonteFortschritte in den Methoden der fluoreszenz-basierten Bildgebung ermöglichen Biowissenschaftlern heutzutage noch nie dagewesene Einblicke in biologische Systeme. Die Interpretation sowie die anschließende quantitative Analyse von Bildelementen in biologischen Bilddatensätzen wird in der Wissenschaft als bioimage analysis bezeichnet. Ein wesentlicher Anteil der bioimage analysis wird noch immer von Experten per Hand durchgeführt - ein mühsamer Prozess, von dem man seit langem weiß, dass er subjektiv ist. Besonders bei Aufgabestellungen, welche die Annotierung von Bildelementen mit einem geringen Signal-Rausch-Verhältnis erfordern, wie es beispielsweise bei Fluoreszenzbildern von Gewebeproben der Fall ist, sinkt die Übereinstimmung zwischen den Bewertungen mehrerer Experten. Genauso wie jede andere wissenschaftliche Analyse, muss jedoch auch die bioimage analysis den generellen Qualitätskriterien quantitativer Forschung gerecht werden. Dies sind Objektivität, Zuverlässigkeit und Validität. Die Automatisierung der bioimage analysis mit Hilfe von computer-basierten Ansätzen ist somit erstrebenswert. Konventionelle, hartkodierte Algorithmen sind zwar vollkommen unvoreingenommen, jedoch legt ein menschlicher Benutzer jene Parameter fest, die der Algorithmus für die Extraktion der relevanten Bildelemente nutzt. Aus diesem Grund sind auch diese Ansätze zumindest partiell subjektiv. In den letzten Jahren hat Deep learning (DL) zu beeindruckenden Fortschritten auf dem Forschungsgebiet der computer vision beigetragen. Der vorherrschende Unterschied zwischen DL und konventionellen Algorithmen besteht darin, dass DL Modelle in der Lage sind die jeweilige Aufgabe auf Grundlage eines annotierten Trainingsdatensatzes zu lernen, anstatt starr den Parametern zu folgen, die der Benutzer für die Extraktion der relevanten Bildelemente vorgegeben hat. In dieser Dissertation wurde die Hypothese untersucht, ob DL, neben der Möglichkeit der automatischen Bildanalyse, auch dazu genutzt werden kann die Objektivität, die Zuverlässigkeit und die Validität der Bildanalyse zu verbessern. Ohne eine objektive Referenzannotierung muss das Training der DL Modelle jedoch auf händisch erstellten und somit also subjektiven Annotierungen durchgeführt werden. Theoretisch könnte dies dazu führen, dass das DL-Modell diese Vorgeingenommenheit übernimmt. Außerdem unterliegt das Training der Modelle stochastischen Prozessen und selbst Modelle, die auf den gleichen Trainingsdaten trainiert wurden, könnten sich danach in ihren ausgegeben Analysen unterscheiden. Demzufolge könnten also sowohl das Training auf subjektiven Annotierungen als auch die Variabilität von Modell zu Modell die Qualität der DL-basierten Analyse von biologischen Bilddaten beeinträchtigen. In dieser Dissertation werden die Einflüsse von diesen beiden Limitierungen auf Grundlage von experimentellen Daten untersucht. In den experimentellen Bilddaten werden Fluoreszenzsignale des Proteins cFOS in Hirnschnitten von Mäusen dargestellt und hier repräsentativ untersucht. Da das Vorkommen von cFOS mit dem Verhalten der Mäuse korreliert, kann die Analyse des Verhaltens der Mäuse zur Kreuzvalidierung der Analyse der biologischen Bilddaten herangezogen werden. Die Daten dieser Dissertation zeigen, dass die Integration mehrerer Experten in das Training eines Modells sowie die Integration mehrerer trainierter Modelle in ein Modell-Ensemble das Risiko einer subjektiven oder nicht reproduzierbaren Bildanalyse abschwächen können. Diese Arbeit etabliert Richtlinien dafür, wie DL verwendet werden kann, um die generelle Qualität der Analyse biologischer Bilddaten zu erhöhen
Komara, Akhilandeswari. "Aspect Mining of COVID-19 Outbreak with SVM and NaiveBayes Techniques". Thesis, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-21891.
Texto completo da fonteБублик, Анна Олександрівна. "Нейромережна система аналізу та розпізнавання емоцій на обличчі". Магістерська робота, 2020. https://dspace.znu.edu.ua/jspui/handle/12345/4741.
Texto completo da fonteUA : Мета роботи полягає у дослідженні та вивченні методів розпізнавання обличчя людини та підходів до аналізу емоцій людини,порівняння їх особ-ливостей, перевірка можливостей застосування і створення нейромережної системи для розпізнавання емоцій людини в режимі реального часу.Досліджено методи і конкуруючі сучасні системи розпізнавання емоцій з обличчя людини, їх проблематикуі можливості розробки і використання системи. Порівняно методи виділення обличчя людини і методи розпізнаван-ня емоцій людини. Спроектовано та реалізовано згорткову нейронну мережу на мові програмування Python.Створено веб-застосунок, що дозволяє розпі-знавати емоції на обличчі людини в режимі реального часу завдяки створеній нейронній мережі.
EN : The aim of the research is to study the methods of human face recognition and approaches to the analysis of human emotions, comparing their features, testing the application and creating a neural network system for recognizing human emotions in real time..Methods and competing modern systems of emotions recognition from the personfacial expressions, their problems and possibilities of development and use of system are investigated. The methods of detectinga person's face and methods of recognizing human emotions are compared. A convolutional neural network in the Python programming language was designed and implemented. Created a web application that allows userto recognize emotions in real time due tothe created neural network.
Beaulieu, Mario. "Analyse de la réduction du chatoiement sur les images radar polarimétrique à l'aide des réseaux neuronaux à convolutions". Thesis, 2020. http://hdl.handle.net/1866/24219.
Texto completo da fonteDue to the coherent nature of the Synthetic Aperture Radar (SAR) signal, polarimetric SAR(POLSAR) images are affected by speckle noise. The effect of speckle can be so severe as to render the POLSAR data unusable. This is especially true for single-look data that suffer from very intense speckle. Noise filtering is necessary to improve the estimation of polarimetric parameters that can be computed from this type of data. This is an important step in the processing and analysis of POLSAR images. Recently, a new approach has emerged in data processing aimed at solving a multi-tude of problems including filtering, image restoration, speech recognition, classification orimage segmentation. This approach is deep learning and convolutional neural networks(CONVNET). Recent works show that CONVNET are a promising alternative for filtering SAR images. Indeed, by their ability to learn an optimal filtering model only from the data, they tend to outperform classical approaches to filtering on SAR images. The objective of this study is to analyze and evaluate the effectiveness of CONVNET filtering on simulated POLSAR data and on RADARSAT-2, ALOS/PalSAR and GaoFen-3 satellite images acquired over the San Francisco urban area (California). Models inspired by the architecture of a CONVNET used in particular in super-resolution have been adapted for the filtering of the polarimetric coherency matrix. The effect of different structural parameters of theCONVNET architecture on filtering were analyzed, among which are the depth of the neural network (the number of stacked layers), the width of the neural network (the number of filters per convoluted layer) and the size of the filters of the first convolution layer. The models were learned by backpropagation of the error gradient using 3 datasets that simulate single-look polarimetry of the scatterers according to Cloude-Pottier classes. The first dataset contains only homogeneous areas. The last two datasets consist of patchwork simulations where local intensity is simulated by texture images and point target are added to the patchwork in the case of the last dataset. The performance of the different filters by CONVNET was measured by indicators including relative error on the estimation of polarimetric signatures and decomposition parameters as well as distortion measurements on the recovery of major details and on the conservation of point targets.The results show that CONVNET filtering of polarimetric data is either equivalent or significantly superior to conventional polarimetric filters. The results of the deepest models obtain the best performance for all indicators over the simulated homogeneous dataset. Inthe case of patchwork dataset, the results for detail restoration are clearly favourable to the deepest CONVNET filtering. The application of CONVNET filtering on RADARSAT-2, ALOS/PalSAR andGaoFen-3 satellite images shows results comparable or superior to conventional filters. The best results were obtained by the 5 hidden layers model (not counting the input and outputlayers), with 8 filters 3×3 per convolutional layer, except for the input layer where the filtersize was 9×9. On the other hand, the training data must be well adjusted to the statistical range of the real polarimetric images to obtain good results. This is especially true when modeling point targets that appear to be more difficult to restore.