Literatura científica selecionada sobre o tema "Dental repair/regeneration"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Dental repair/regeneration".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Artigos de revistas sobre o assunto "Dental repair/regeneration"

1

Jin, Yiyao, and Ruijie Zeng. "Research on the current situation of regenerative pulp surgery." Highlights in Science, Engineering and Technology 8 (August 17, 2022): 50–53. http://dx.doi.org/10.54097/hset.v8i.1109.

Texto completo da fonte
Resumo:
Regenerative dental pulp therapy uses the principle of biological tissue engineering to replace the damaged dental pulp tissue with living tissue and repair the complex of dental pulp and dentin, so as to restore the normal function of dental pulp dentin structure. For root canal therapy, it is a new type of alternative therapy. In front of it, the treatment is divided into two types: cellular pulp regeneration therapy and acellular pulp regeneration therapy. Cellular regeneration is based on exogenous stem cell transplantation and acellular regeneration is based on endogenous stem cell homing
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Acurio- Cevallos, Sophia Isabella, Emily Estefanía López- Llerena, Rolando Manuel Benites, and Carla Pamela Rodríguez Fiallos. ""Dental regeneration therapy using dental stem cells”." Interamerican Journal of Health Sciences 4 (July 22, 2024): 86. http://dx.doi.org/10.59471/ijhsc202486.

Texto completo da fonte
Resumo:
INTRODUCTION: Regenerative dentistry has undergone significant advances in recent years, and stem cells of dental origin have emerged as a promising therapeutic tool in this field. AIM: To investigate the different types of stem cells of dental origin and to examine their potential application in regenerative therapy in dentistry. METHODOLOGY: A selection of articles published between 2018 and 2023 was performed using the recognized databases Scopus, PubMed, ProQuest, Redalyc, Ovid and Medline. RESULTS: Five main sources of stem cells of dental origin were identified, which have demonstrated t
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Ghosh, Sumanta, Wei Qiao, Zhengbao Yang, Santiago Orrego, and Prasanna Neelakantan. "Engineering Dental Tissues Using Biomaterials with Piezoelectric Effect: Current Progress and Future Perspectives." Journal of Functional Biomaterials 14, no. 1 (2022): 8. http://dx.doi.org/10.3390/jfb14010008.

Texto completo da fonte
Resumo:
Dental caries and traumatic injuries to teeth may cause irreversible inflammation and eventual death of the dental pulp. Nevertheless, predictably, repair and regeneration of the dentin-pulp complex remain a formidable challenge. In recent years, smart multifunctional materials with antimicrobial, anti-inflammatory, and pro-regenerative properties have emerged as promising approaches to meet this critical clinical need. As a unique class of smart materials, piezoelectric materials have an unprecedented advantage over other stimuli-responsive materials due to their inherent capability to genera
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Ghafoor, Robia. "Stem Cell Role in Regenerative Dental Medicine." Annals of Jinnah Sindh Medical University 8, no. 2 (2022): 45–46. http://dx.doi.org/10.46663/ajsmu.v8i2.45-46.

Texto completo da fonte
Resumo:
Regeneration therapies have widely permeated advanced research that aims to reproduce and repair a lost or damaged organ or tissue in order to restore the function and architecture as close to its original state as possible. Tissue engineering refers to the process of regeneration using techniques such as scaffold based cell cultures, stem cell therapy, and biomolecular signaling.
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Mitsiadis, T. A., A. Feki, G. Papaccio, and J. Catón. "Dental Pulp Stem Cells, Niches, and Notch Signaling in Tooth Injury." Advances in Dental Research 23, no. 3 (2011): 275–79. http://dx.doi.org/10.1177/0022034511405386.

Texto completo da fonte
Resumo:
Stem cells guarantee tissue repair and regeneration throughout life. The decision between cell self-renewal and differentiation is influenced by a specialized microenvironment called the ‘stem cell niche’. In the tooth, stem cell niches are formed at specific anatomic locations of the dental pulp. The microenvironment of these niches regulates how dental pulp stem cell populations participate in tissue maintenance, repair, and regeneration. Signaling molecules such as Notch proteins are important regulators of stem cell function, with various capacities to induce proliferation or differentiati
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Ivanov, Alexey A., Alla V. Kuznetsova, Olga P. Popova, Tamara I. Danilova, and Oleg O. Yanushevich. "Modern Approaches to Acellular Therapy in Bone and Dental Regeneration." International Journal of Molecular Sciences 22, no. 24 (2021): 13454. http://dx.doi.org/10.3390/ijms222413454.

Texto completo da fonte
Resumo:
An approach called cell-free therapy has rapidly developed in regenerative medicine over the past decade. Understanding the molecular mechanisms and signaling pathways involved in the internal potential of tissue repair inspires the development of new strategies aimed at controlling and enhancing these processes during regeneration. The use of stem cell mobilization, or homing for regeneration based on endogenous healing mechanisms, prompted a new concept in regenerative medicine: endogenous regenerative medicine. The application of cell-free therapeutic agents leading to the recruitment/homin
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Alnasser, Muhsen, Abdullah Hammad Alshammari, Amna Yusuf Siddiqui, et al. "Tissue Regeneration on Rise: Dental Hard Tissue Regeneration and Challenges—A Narrative Review." Scientifica 2024 (April 22, 2024): 1–13. http://dx.doi.org/10.1155/2024/9990562.

Texto completo da fonte
Resumo:
Background. As people live longer, there is an increasing need for hard tissue regeneration and whole-tooth regeneration. Despite the advancements in the field of medicine, the field of regenerative dentistry is still challenging due to the complexity of dental hard tissues. Cross-disciplinary collaboration among material scientists, cellular biologists, and odontologists aimed at developing strategies and uncovering solutions related to dental tissue regeneration. Methodology. A search of the literature was done for pertinent research. Consistent with the Preferred Reporting Items for Systema
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Miran, Shayee, Thimios A. Mitsiadis, and Pierfrancesco Pagella. "Innovative Dental Stem Cell-Based Research Approaches: The Future of Dentistry." Stem Cells International 2016 (2016): 1–7. http://dx.doi.org/10.1155/2016/7231038.

Texto completo da fonte
Resumo:
Over the past decade, the dental field has benefited from recent findings in stem cell biology and tissue engineering that led to the elaboration of novel ideas and concepts for the regeneration of dental tissues or entire new teeth. In particular, stem cell-based regenerative approaches are extremely promising since they aim at the full restoration of lost or damaged tissues, ensuring thus their functionality. These therapeutic approaches are already applied with success in clinics for the regeneration of other organs and consist of manipulation of stem cells and their administration to patie
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Wu, David T., Jose G. Munguia-Lopez, Ye Won Cho, et al. "Polymeric Scaffolds for Dental, Oral, and Craniofacial Regenerative Medicine." Molecules 26, no. 22 (2021): 7043. http://dx.doi.org/10.3390/molecules26227043.

Texto completo da fonte
Resumo:
Dental, oral, and craniofacial (DOC) regenerative medicine aims to repair or regenerate DOC tissues including teeth, dental pulp, periodontal tissues, salivary gland, temporomandibular joint (TMJ), hard (bone, cartilage), and soft (muscle, nerve, skin) tissues of the craniofacial complex. Polymeric materials have a broad range of applications in biomedical engineering and regenerative medicine functioning as tissue engineering scaffolds, carriers for cell-based therapies, and biomedical devices for delivery of drugs and biologics. The focus of this review is to discuss the properties and clini
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Luo, Lihua, Yan He, Xiaoyan Wang, et al. "Potential Roles of Dental Pulp Stem Cells in Neural Regeneration and Repair." Stem Cells International 2018 (2018): 1–15. http://dx.doi.org/10.1155/2018/1731289.

Texto completo da fonte
Resumo:
This review summarizes current advances in dental pulp stem cells (DPSCs) and their potential applications in the nervous diseases. Injured adult mammalian nervous system has a limited regenerative capacity due to an insufficient pool of precursor cells in both central and peripheral nervous systems. Nerve growth is also constrained by inhibitory factors (associated with central myelin) and barrier tissues (glial scarring). Stem cells, possessing the capacity of self-renewal and multicellular differentiation, promise new therapeutic strategies for overcoming these impediments to neural regener
Estilos ABNT, Harvard, Vancouver, APA, etc.
Mais fontes
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!