Siga este link para ver outros tipos de publicações sobre o tema: Differential equations, Partial Numerical solutions.

Teses / dissertações sobre o tema "Differential equations, Partial Numerical solutions"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores trabalhos (teses / dissertações) para estudos sobre o assunto "Differential equations, Partial Numerical solutions".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja as teses / dissertações das mais diversas áreas científicas e compile uma bibliografia correta.

1

Bratsos, A. G. "Numerical solutions of nonlinear partial differential equations." Thesis, Brunel University, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.332806.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Sundqvist, Per. "Numerical Computations with Fundamental Solutions." Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis : Univ.-bibl. [distributör], 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-5757.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Kwok, Ting On. "Adaptive meshless methods for solving partial differential equations." HKBU Institutional Repository, 2009. http://repository.hkbu.edu.hk/etd_ra/1076.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Zeng, Suxing. "Numerical solutions of boundary inverse problems for some elliptic partial differential equations." Morgantown, W. Va. : [West Virginia University Libraries], 2009. http://hdl.handle.net/10450/10345.

Texto completo da fonte
Resumo:
Thesis (Ph. D.)--West Virginia University, 2009.<br>Title from document title page. Document formatted into pages; contains v, 58 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 56-58).
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Williamson, Rosemary Anne. "Numerical solution of hyperbolic partial differential equations." Thesis, University of Cambridge, 1985. https://www.repository.cam.ac.uk/handle/1810/278503.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Postell, Floyd Vince. "High order finite difference methods." Diss., Georgia Institute of Technology, 1990. http://hdl.handle.net/1853/28876.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Luo, Wuan Hou Thomas Y. "Wiener chaos expansion and numerical solutions of stochastic partial differential equations /." Diss., Pasadena, Calif. : Caltech, 2006. http://resolver.caltech.edu/CaltechETD:etd-05182006-173710.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Cheung, Ka Chun. "Meshless algorithm for partial differential equations on open and singular surfaces." HKBU Institutional Repository, 2016. https://repository.hkbu.edu.hk/etd_oa/278.

Texto completo da fonte
Resumo:
Radial Basis function (RBF) method for solving partial differential equation (PDE) has a lot of applications in many areas. One of the advantages of RBF method is meshless. The cost of mesh generation can be reduced by playing with scattered data. It can also allow adaptivity to solve some problems with special feature. In this thesis, RBF method will be considered to solve several problems. Firstly, we solve the PDEs on surface with singularity (folded surface) by a localized method. The localized method is a generalization of finite difference method. A priori error estimate for the discreit
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Yang, Xue-Feng. "Extensions of sturm-liouville theory : nodal sets in both ordinary and partial differential equations." Diss., Georgia Institute of Technology, 1995. http://hdl.handle.net/1853/28021.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

He, Chuan. "Numerical solutions of differential equations on FPGA-enhanced computers." [College Station, Tex. : Texas A&M University, 2007. http://hdl.handle.net/1969.1/ETD-TAMU-1248.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Al-Muslimawi, Alaa Hasan A. "Numerical analysis of partial differential equations for viscoelastic and free surface flows." Thesis, Swansea University, 2013. https://cronfa.swan.ac.uk/Record/cronfa42876.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Zhang, Jiwei. "Local absorbing boundary conditions for some nonlinear PDEs on unbounded domains." HKBU Institutional Repository, 2009. http://repository.hkbu.edu.hk/etd_ra/1074.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

ROEHL, NITZI MESQUITA. "NUMERICAL SOLUTIONS FOR SHAPE OPTIMIZATION PROBLEMS ASSOCIATED WITH ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 1991. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=9277@1.

Texto completo da fonte
Resumo:
COORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR<br>Essa dissertação visa à obtenção de soluções numéricas para problemas de otimização de formas geométricas associados a equações diferenciais parciais elípticas. A principal motivação é um problema termal, onde deseja-se determinar a fronteira ótima, para um volume de material isolante fixo, tal que a perda de calor de um corpo seja minimizada. Realiza-se a análise e implementação numérica de uma abordagem via método das penalidades dos problemas de minimização. O método de elementos finitos é utilizado para discretizar o
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Qiao, Zhonghua. "Numerical solution for nonlinear Poisson-Boltzmann equations and numerical simulations for spike dynamics." HKBU Institutional Repository, 2006. http://repository.hkbu.edu.hk/etd_ra/727.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Gyurko, Lajos Gergely. "Numerical methods for approximating solutions to rough differential equations." Thesis, University of Oxford, 2008. http://ora.ox.ac.uk/objects/uuid:d977be17-76c6-46d6-8691-6d3b7bd51f7a.

Texto completo da fonte
Resumo:
The main motivation behind writing this thesis was to construct numerical methods to approximate solutions to differential equations driven by rough paths, where the solution is considered in the rough path-sense. Rough paths of inhomogeneous degree of smoothness as driving noise are considered. We also aimed to find applications of these numerical methods to stochastic differential equations. After sketching the core ideas of the Rough Paths Theory in Chapter 1, the versions of the core theorems corresponding to the inhomogeneous degree of smoothness case are stated and proved in Chapter 2 al
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Sweet, Erik. "ANALYTICAL AND NUMERICAL SOLUTIONS OF DIFFERENTIALEQUATIONS ARISING IN FLUID FLOW AND HEAT TRANSFER PROBLEMS." Doctoral diss., University of Central Florida, 2009. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/2585.

Texto completo da fonte
Resumo:
The solutions of nonlinear ordinary or partial differential equations are important in the study of fluid flow and heat transfer. In this thesis we apply the Homotopy Analysis Method (HAM) and obtain solutions for several fluid flow and heat transfer problems. In chapter 1, a brief introduction to the history of homotopies and embeddings, along with some examples, are given. The application of homotopies and an introduction to the solutions procedure of differential equations (used in the thesis) are provided. In the chapters that follow, we apply HAM to a variety of problems to highlight its
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Bujok, Karolina Edyta. "Numerical solutions to a class of stochastic partial differential equations arising in finance." Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:d2e76713-607b-4f26-977a-ac4df56d54f2.

Texto completo da fonte
Resumo:
We propose two alternative approaches to evaluate numerically credit basket derivatives in a N-name structural model where the number of entities, N, is large, and where the names are independent and identically distributed random variables conditional on common random factors. In the first framework, we treat a N-name model as a set of N Bernoulli random variables indicating a default or a survival. We show that certain expected functionals of the proportion L<sub>N</sub> of variables in a given state converge at rate 1/N as N [right arrow - infinity]. Based on these results, we propose a mult
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Pitts, George Gustav. "Domain decomposition and high order discretization of elliptic partial differential equations." Diss., Virginia Tech, 1994. http://hdl.handle.net/10919/39143.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Pitts, George G. "Domain decomposition and high order discretization of elliptic partial differential equations." Diss., Virginia Tech, 1994. http://hdl.handle.net/10919/39143.

Texto completo da fonte
Resumo:
Numerical solutions of partial differential equations (PDEs) resulting from problems in both the engineering and natural sciences result in solving large sparse linear systems Au = b. The construction of such linear systems and their solutions using either direct or iterative methods are topics of continuing research. The recent advent of parallel computer architectures has resulted in a search for good parallel algorithms to solve such systems, which in turn has led to a recent burgeoning of research into domain decomposition algorithms. Domain decomposition is a procedure which employs subdi
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Tråsdahl, Øystein. "Numerical solution of partial differential equations in time-dependent domains." Thesis, Norwegian University of Science and Technology, Department of Mathematical Sciences, 2008. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-9752.

Texto completo da fonte
Resumo:
<p>Numerical solution of heat transfer and fluid flow problems in two spatial dimensions is studied. An arbitrary Lagrangian-Eulerian (ALE) formulation of the governing equations is applied to handle time-dependent geometries. A Legendre spectral method is used for the spatial discretization, and the temporal discretization is done with a semi-implicit multi-step method. The Stefan problem, a convection-diffusion boundary value problem modeling phase transition, makes for some interesting model problems. One problem is solved numerically to obtain first, second and third order convergence in t
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Ibrahem, Abdul Nabi Ismail. "The numerical solution of partial differential equations on unbounded domains." Thesis, Keele University, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.279648.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Trojan, Alice von. "Finite difference methods for advection and diffusion." Title page, abstract and contents only, 2001. http://web4.library.adelaide.edu.au/theses/09PH/09phv948.pdf.

Texto completo da fonte
Resumo:
Includes bibliographical references (leaves 158-163). Concerns the development of high-order finite-difference methods on a uniform rectangular grid for advection and diffuse problems with smooth variable coefficients. This technique has been successfully applied to variable-coefficient advection and diffusion problems. Demonstrates that the new schemes may readily be incorporated into multi-dimensional problems by using locally one-dimensional techniques, or that they may be used in process splitting algorithms to solve complicatef time-dependent partial differential equations.
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Pun, K. S. "The numerical solution of partial differential equations with the Tau method." Thesis, Imperial College London, 1985. http://hdl.handle.net/10044/1/37823.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Barreira, Maria Raquel. "Numerical solution of non-linear partial differential equations on triangulated surfaces." Thesis, University of Sussex, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.496863.

Texto completo da fonte
Resumo:
This work aims to solve numerically non-linear partial differential equations on surfaces, that may evolve in time, for a set of different applications. The core of all the numerical schemes is a finite element method recently introduced for triangulated surfaces. The main classes of applications under appreciation are the motion of curves on surfaces, segmentation of images painted on surfaces and the formation of Turing patterns on surfaces. For the first one, three different approaches are considered and compared: the level set method, the phase field framework and the diffusion generated m
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Pratt, P. "Problem solving environments for the numerical solution of partial differential equations." Thesis, University of Leeds, 1996. http://etheses.whiterose.ac.uk/1267/.

Texto completo da fonte
Resumo:
The complexity and sophistication of numerical codes for the simulation of complex problems modelled by partial differential equations (PDEs) has increased greatly over the last decade. This makes it difficult for those without direct knowledge of the PDE software to employ it efficiently. Problem Solving Environments (PSEs) are seen as a way of making it possible to provide an easy-to-use layer surrounding the numerical software. The users can then concentrate on gaining an understanding of the physical problem through the results the code is providing. PSEs aim to aid novice and expert users
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

何正華 and Ching-wah Ho. "Iterative methods for the Robbins problem." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2000. http://hub.hku.hk/bib/B31222572.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Malek, Alaeddin. "Numerical spectral solution of elliptic partial differential equations using domain decomposition techniques." Thesis, Cardiff University, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.241798.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

Jayes, Mohd Idris. "Numerical solution of ordinary and partial differential equations occurring in scientific applications." Thesis, Loughborough University, 1992. https://dspace.lboro.ac.uk/2134/32103.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Palitta, Davide. "Preconditioning strategies for the numerical solution of convection-diffusion partial differential equations." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2014. http://amslaurea.unibo.it/7464/.

Texto completo da fonte
Resumo:
Il trattamento numerico dell'equazione di convezione-diffusione con le relative condizioni al bordo, comporta la risoluzione di sistemi lineari algebrici di grandi dimensioni in cui la matrice dei coefficienti è non simmetrica. Risolutori iterativi basati sul sottospazio di Krylov sono ampiamente utilizzati per questi sistemi lineari la cui risoluzione risulta particolarmente impegnativa nel caso di convezione dominante. In questa tesi vengono analizzate alcune strategie di precondizionamento, atte ad accelerare la convergenza di questi metodi iterativi. Vengono confrontati sperimentalmente pr
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Kadhum, Nashat Ibrahim. "The spline approach to the numerical solution of parabolic partial differential equations." Thesis, Loughborough University, 1988. https://dspace.lboro.ac.uk/2134/6725.

Texto completo da fonte
Resumo:
This thesis is concerned with the Numerical Solution of Partial Differential Equations. Initially some definitions and mathematical background are given, accompanied by the basic theories of solving linear systems and other related topics. Also, an introduction to splines, particularly cubic splines and their identities are presented. The methods used to solve parabolic partial differential equations are surveyed and classified into explicit or implicit (direct and iterative) methods. We concentrate on the Alternating Direction Implicit (ADI), the Group Explicit (GE) and the Crank-Nicolson (C-
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Macias, Diaz Jorge. "A Numerical Method for Computing Radially Symmetric Solutions of a Dissipative Nonlinear Modified Klein-Gordon Equation." ScholarWorks@UNO, 2004. http://scholarworks.uno.edu/td/167.

Texto completo da fonte
Resumo:
In this paper we develop a finite-difference scheme to approximate radially symmetric solutions of a dissipative nonlinear modified Klein-Gordon equation in an open sphere around the origin, with constant internal and external damping coefficients and nonlinear term of the form G' (w) = w ^p, with p an odd number greater than 1. We prove that our scheme is consistent of quadratic order, and provide a necessary condition for it to be stable order n. Part of our study will be devoted to study the effects of internal and external damping.
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Murali, Vasanth Kumar. "Code verification using the method of manufactured solutions." Master's thesis, Mississippi State : Mississippi State University, 2002. http://library.msstate.edu/etd/show.asp?etd=etd-11112002-121649.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Li, Hongwei. "Local absorbing boundary conditions for wave propagations." HKBU Institutional Repository, 2012. https://repository.hkbu.edu.hk/etd_ra/1434.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Li, Siqing. "Kernel-based least-squares approximations: theories and applications." HKBU Institutional Repository, 2018. https://repository.hkbu.edu.hk/etd_oa/539.

Texto completo da fonte
Resumo:
Kernel-based meshless methods for approximating functions and solutions of partial differential equations have many applications in engineering fields. As only scattered data are used, meshless methods using radial basis functions can be extended to complicated geometry and high-dimensional problems. In this thesis, kernel-based least-squares methods will be used to solve several direct and inverse problems. In chapter 2, we consider discrete least-squares methods using radial basis functions. A general l^2-Tikhonov regularization with W_2^m-penalty is considered. We provide error estimates th
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Perella, Andrew James. "A class of Petrov-Galerkin finite element methods for the numerical solution of the stationary convection-diffusion equation." Thesis, Durham University, 1996. http://etheses.dur.ac.uk/5381/.

Texto completo da fonte
Resumo:
A class of Petrov-Galerkin finite element methods is proposed for the numerical solution of the n dimensional stationary convection-diffusion equation. After an initial review of the literature we describe this class of methods and present both asymptotic and nonasymptotic error analyses. Links are made with the classical Galerkin finite element method and the cell vertex finite volume method. We then present numerical results obtained for a selection of these methods applied to some standard test problems. We also describe extensions of these methods which enable us to solve accurately for de
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

Zhou, Jian Ming. "A multi-grid method for computation of film cooling." Thesis, University of British Columbia, 1990. http://hdl.handle.net/2429/29414.

Texto completo da fonte
Resumo:
This thesis presents a multi-grid scheme applied to the solution of transport equations in turbulent flow associated with heat transfer. The multi-grid scheme is then applied to flow which occurs in the film cooling of turbine blades. The governing equations are discretized on a staggered grid with the hybrid differencing scheme. The momentum and continuity equations are solved by a nonlinear full multi-grid scheme with the SIMPLE algorithm as a relaxation smoother. The turbulence k — Є equations and the thermal energy equation are solved on each grid without multi-grid correction. Observatio
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

Rebaza-Vasquez, Jorge. "Computation and continuation of equilibrium-to-periodic and periodic-to-periodic connections." Diss., Georgia Institute of Technology, 2002. http://hdl.handle.net/1853/28991.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

Platte, Rodrigo B. "Accuracy and stability of global radial basis function methods for the numerical solution of partial differential equations." Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file 8.72Mb, 143 p, 2005. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&res_dat=xri:pqdiss&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&rft_dat=xri:pqdiss:3181853.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Chen, Meng. "Intrinsic meshless methods for PDEs on manifolds and applications." HKBU Institutional Repository, 2018. https://repository.hkbu.edu.hk/etd_oa/528.

Texto completo da fonte
Resumo:
Radial basis function (RBF) methods for partial differential equations (PDEs), either in bulk domains, on surfaces, or in a combination of the formers, arise in a wide range of practical applications. This thesis proposes numerical approaches of RBF-based meshless techniques to solve these three kinds of PDEs on stationary and nonstationary surfaces and domains. In Chapter 1, we introduce the background of RBF methods, some basic concepts, and error estimates for RBF interpolation. We then provide some preliminaries for manifolds, restricted RBFs on manifolds, and some convergence properties o
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Stern, Louis G. "An explicitly conservative method for time-accurate solution of hyperbolic partial differential equations on embedded Chimera grids /." Thesis, Connect to this title online; UW restricted, 1996. http://hdl.handle.net/1773/6758.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

Shu, Yupeng. "Numerical Solutions of Generalized Burgers' Equations for Some Incompressible Non-Newtonian Fluids." ScholarWorks@UNO, 2015. http://scholarworks.uno.edu/td/2051.

Texto completo da fonte
Resumo:
The author presents some generalized Burgers' equations for incompressible and isothermal flow of viscous non-Newtonian fluids based on the Cross model, the Carreau model, and the Power-Law model and some simple assumptions on the flows. The author numerically solves the traveling wave equations for the Cross model, the Carreau model, the Power-Law model by using industrial data. The author proves existence and uniqueness of solutions to the traveling wave equations of each of the three models. The author also provides numerical estimates of the shock thickness as well as maximum strain $\vare
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

Wells, B. V. "A moving mesh finite element method for the numerical solution of partial differential equations and systems." Thesis, University of Reading, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.414567.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

Maroofi, Hamed. "Applications of the Monge - Kantorovich theory." Diss., Georgia Institute of Technology, 2002. http://hdl.handle.net/1853/29197.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

Watson, Aaron Michael. "The WN adaptive method for numerical solution of particle transport problems." Texas A&M University, 2005. http://hdl.handle.net/1969.1/3133.

Texto completo da fonte
Resumo:
The source and nature, as well as the history of ray-effects, is described. A benchmark code, using piecewise constant functions in angle and diamond differencing in space, is derived in order to analyze four sample problems. The results of this analysis are presented showing the ray effects and how increasing the resolution (number of angles) eliminates them. The theory of wavelets is introduced and the use of wavelets in multiresolution analysis is discussed. This multiresolution analysis is applied to the transport equation, and equations that can be solved to calculate the coefficients in
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

Al, Zohbi Maryam. "Contributions to the existence, uniqueness, and contraction of the solutions to some evolutionary partial differential equations." Thesis, Compiègne, 2021. http://www.theses.fr/2021COMP2646.

Texto completo da fonte
Resumo:
Dans cette thèse, nous nous sommes principalement intéressés à l’étude théorique et numérique de quelques équations qui décrivent la dynamique des densités des dislocations. Les dislocations sont des défauts microscopiques qui se déplacent dans les matériaux sous l’effet des contraintes extérieures. Dans un premier travail, nous démontrons un résultat d’existence globale en temps des solutions discontinues pour un système hyperbolique diagonal qui n’est pas nécessairement strictement hyperbolique, dans un espace unidimensionnel. Ainsi dans un deuxième travail, nous élargissons notre portée en
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

Li, Wen. "Numerical methods for the solution of the HJB equations arising in European and American option pricing with proportional transaction costs." University of Western Australia. School of Mathematics and Statistics, 2010. http://theses.library.uwa.edu.au/adt-WU2010.0098.

Texto completo da fonte
Resumo:
This thesis is concerned with the investigation of numerical methods for the solution of the Hamilton-Jacobi-Bellman (HJB) equations arising in European and American option pricing with proportional transaction costs. We first consider the problem of computing reservation purchase and write prices of a European option in the model proposed by Davis, Panas and Zariphopoulou [19]. It has been shown [19] that computing the reservation purchase and write prices of a European option involves solving three different fully nonlinear HJB equations. In this thesis, we propose a penalty approach combine
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

McCoy, James A. (James Alexander) 1976. "The surface area preserving mean curvature flow." Monash University, Dept. of Mathematics, 2002. http://arrow.monash.edu.au/hdl/1959.1/8291.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

Thorne, Jr Daniel Thomas. "Multigrid with Cache Optimizations on Adaptive Mesh Refinement Hierarchies." UKnowledge, 2003. http://uknowledge.uky.edu/gradschool_diss/325.

Texto completo da fonte
Resumo:
This dissertation presents a multilevel algorithm to solve constant and variable coeffcient elliptic boundary value problems on adaptively refined structured meshes in 2D and 3D. Cacheaware algorithms for optimizing the operations to exploit the cache memory subsystem areshown. Keywords: Multigrid, Cache Aware, Adaptive Mesh Refinement, Partial Differential Equations, Numerical Solution.
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

Lao, Kun Leng. "Multigrid algorithm based on cyclic reduction for convection diffusion equations." Thesis, University of Macau, 2010. http://umaclib3.umac.mo/record=b2148274.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

Brubaker, Lauren P. "Completely Residual Based Code Verification." University of Akron / OhioLINK, 2006. http://rave.ohiolink.edu/etdc/view?acc_num=akron1132592325.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!