Literatura científica selecionada sobre o tema "Digital Nonlinear Oscillators"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Digital Nonlinear Oscillators".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Digital Nonlinear Oscillators"
Murphy, Thomas E., Adam B. Cohen, Bhargava Ravoori, Karl R. B. Schmitt, Anurag V. Setty, Francesco Sorrentino, Caitlin R. S. Williams, Edward Ott e Rajarshi Roy. "Complex dynamics and synchronization of delayed-feedback nonlinear oscillators". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 368, n.º 1911 (28 de janeiro de 2010): 343–66. http://dx.doi.org/10.1098/rsta.2009.0225.
Texto completo da fonteLi, XiaoFu, Md Raf E Ul Shougat, Tushar Mollik, Robert N. Dean, Aubrey N. Beal e Edmon Perkins. "Field-programmable analog array (FPAA) based four-state adaptive oscillator for analog frequency analysis". Review of Scientific Instruments 94, n.º 3 (1 de março de 2023): 035103. http://dx.doi.org/10.1063/5.0129365.
Texto completo da fonteKitio, Gabin Jeatsa, Cyrille Ainamon, Karthikeyan Rajagopal, Léandre Kamdjeu Kengne, Sifeu Takougang Kingni e Justin Roger Mboupda Pone. "Four-Scroll Hyperchaotic Attractor in a Five-Dimensional Memristive Wien Bridge Oscillator: Analysis and Digital Electronic Implementation". Mathematical Problems in Engineering 2021 (19 de outubro de 2021): 1–21. http://dx.doi.org/10.1155/2021/4820771.
Texto completo da fonteSpanos, P. D., A. Sofi e M. Di Paola. "Nonstationary Response Envelope Probability Densities of Nonlinear Oscillators". Journal of Applied Mechanics 74, n.º 2 (6 de fevereiro de 2006): 315–24. http://dx.doi.org/10.1115/1.2198253.
Texto completo da fonteVIEIRA, MARIA DE SOUSA, ALLAN J. LICHTENBERG e MICHAEL A. LIEBERMAN. "NONLINEAR DYNAMICS OF DIGITAL PHASE-LOCKED LOOPS WITH DELAY". International Journal of Bifurcation and Chaos 04, n.º 03 (junho de 1994): 715–26. http://dx.doi.org/10.1142/s0218127494000514.
Texto completo da fonteShabunin, Aleksej. "Selection of spatial modes in an ensemble of non-locally coupled chaotic maps". Izvestiya VUZ. Applied Nonlinear Dynamics 30, n.º 1 (31 de janeiro de 2022): 109–24. http://dx.doi.org/10.18500/0869-6632-2022-30-1-109-124.
Texto completo da fonteKrenk, S., e J. B. Roberts. "Local Similarity in Nonlinear Random Vibration". Journal of Applied Mechanics 66, n.º 1 (1 de março de 1999): 225–35. http://dx.doi.org/10.1115/1.2789151.
Texto completo da fonteRoy, R. V. "Noise-Induced Transitions in Weakly Nonlinear Oscillators Near Resonance". Journal of Applied Mechanics 62, n.º 2 (1 de junho de 1995): 496–504. http://dx.doi.org/10.1115/1.2895957.
Texto completo da fonteRoy, R. Vale´ry, e P. D. Spanos. "Power Spectral Density of Nonlinear System Response: The Recursion Method". Journal of Applied Mechanics 60, n.º 2 (1 de junho de 1993): 358–65. http://dx.doi.org/10.1115/1.2900801.
Texto completo da fonteDovbnya, Vitaly G., e Dmitry S. Koptev. "MATHEMATICAL MODEL OF THE RECEIVING PATH OF DIGITAL COMMUNICATION LINES". T-Comm 15, n.º 5 (2021): 52–57. http://dx.doi.org/10.36724/2072-8735-2021-15-5-52-57.
Texto completo da fonteTeses / dissertações sobre o assunto "Digital Nonlinear Oscillators"
MORETTI, RICCARDO. "Digital Nonlinear Oscillators: A Novel Class of Circuits for the Design of Entropy Sources in Programmable Logic Devices". Doctoral thesis, Università di Siena, 2021. http://hdl.handle.net/11365/1144376.
Texto completo da fonteIng, James. "Near grazing dynamics of piecewise linear oscillators". Thesis, Available from the University of Aberdeen Library and Historic Collections Digital Resources, 2008. http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?application=DIGITOOL-3&owner=resourcediscovery&custom_att_2=simple_viewer&pid=24711.
Texto completo da fonteAkre, Niamba Jean-Michel. "Etude de la synchronisation et de la stabilité d’un réseau d’oscillateurs non linéaires. Application à la conception d’un système d’horlogerie distribuée pour un System-on-Chip (projet HODISS)". Thesis, Supélec, 2013. http://www.theses.fr/2013SUPL0001/document.
Texto completo da fonteThe HODISS project, context in which this work is achieved, addresses the problem of global synchronization of complex systems-on-chip (SOCs, such as a monolithic multiprocessor). Since the traditional approaches of clock distribution are less used due to the increase of the clock frequency, increased delay, increased circuit complexity and uncertainties of manufacture, designers are interested (to circumvent these difficulties) to other techniques based among others on distributed synchronous clocks. The main difficulty of this latter approach is the ability to ensure the overall system synchronization. We propose a clock distribution system based on a network of phase-coupled oscillators. To synchronize these oscillators, each is in fact a phase-locked loop which allows to ensure a phase coupling with the nearest neighboring oscillators. We analyze the stability of the synchronized state in Cartesian networks of identical all-digital phase-locked loops (ADPLLs). Under certain conditions, we show that the entire network may synchronize both in phase and frequency. A key aspect of this study lies in the fact that, in the absence of an absolute reference clock, the loop-filter in each ADPLL is operated on the irregular rising edges of the local oscillator and consequently, does not use the same operands depending on whether the local clock is leading or lagging with respect to the signal considered as reference. Under simple assumptions, these networks of so-called “self-sampled” all-digital phase-locked-loops (SS-ADPLLs) can be described as piecewise-linear systems, the stability of which is notoriously difficult to establish. One of the main contributions presented here is the definition of simple design rules that must be satisfied by the coefficients of each loop-filter in order to achieve synchronization in a Cartesian network of arbitrary size. Transient simulations indicate that this necessary synchronization condition may also be sufficient for a specific class of SS-ADPLLs
Mansingka, Abhinav S. "Fully Digital Chaotic Oscillators Applied to Pseudo Random Number Generation". Thesis, 2012. http://hdl.handle.net/10754/224712.
Texto completo da fonteCapítulos de livros sobre o assunto "Digital Nonlinear Oscillators"
Addabbo, Tommaso, Ada Fort, Riccardo Moretti, Marco Mugnaini e Valerio Vignoli. "Low-Level Advanced Design of True Random Number Generators Based on Truly Chaotic Digital Nonlinear Oscillators in FPGAs". In Lecture Notes in Electrical Engineering, 180–86. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-95498-7_25.
Texto completo da fonteRubio, M. A., M. de la Torre, J. C. Antoranz e M. G. Velarde. "Digital and Analog Approach to Intermittencies and 1/f Noise in a Nonlinear Helmholtz Oscillator". In Springer Series in Synergetics, 196–201. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-73089-4_17.
Texto completo da fonteEpstein, Irving R., e John A. Pojman. "Computational Tools". In An Introduction to Nonlinear Chemical Dynamics. Oxford University Press, 1998. http://dx.doi.org/10.1093/oso/9780195096705.003.0012.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Digital Nonlinear Oscillators"
Addabbo, T., A. Fort, R. Moretti, M. Mugnaini e V. Vignoli. "Analysis of a Circuit Primitive for the Reliable Design of Digital Nonlinear Oscillators". In 2019 15th Conference on Ph.D Research in Microelectronics and Electronics (PRIME). IEEE, 2019. http://dx.doi.org/10.1109/prime.2019.8787773.
Texto completo da fonteRontani, D., A. Locquet, M. Sciamanna e D. S. Citrin. "Multiplexing digital information using hyperchaotic optoelectronic oscillators with nonlinear time-delayed feedback loops". In 11th European Quantum Electronics Conference (CLEO/EQEC). IEEE, 2009. http://dx.doi.org/10.1109/cleoe-eqec.2009.5194738.
Texto completo da fonteZaycev, Valeriy, e Alalvan Kasim. "NON-LINEAR OSCILLATORS IN DISCRETE TIME: ANALYSIS AND SYNTHESIS OF DYNAMIC SYSTEMS". In CAD/EDA/SIMULATION IN MODERN ELECTRONICS 2021. Bryansk State Technical University, 2021. http://dx.doi.org/10.30987/conferencearticle_61c997ef87b033.35809465.
Texto completo da fonteAddabbo, T., A. Fort, M. Mugnaini, V. Vignoli e M. Garcia-Bosque. "Digital Nonlinear Oscillators in PLDs: Pitfalls and Open Perspectives for a Novel Class of True Random Number Generators". In 2018 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, 2018. http://dx.doi.org/10.1109/iscas.2018.8351622.
Texto completo da fonteAddabbo, T., A. Fort, M. Mugnaini, R. Moretti, V. Vignoli e D. Papini. "A Low-Complexity Method to Address Process Variability in True Random Number Generators based on Digital Nonlinear Oscillators". In 2022 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, 2022. http://dx.doi.org/10.1109/iscas48785.2022.9937869.
Texto completo da fonteNakagami, Takakiyo, e Nobuhiro Fujimoto. "Laser amplifiers for optical signal processing and multiplexing systems". In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1990. http://dx.doi.org/10.1364/oam.1990.wm3.
Texto completo da fonteJackson, M. K., M. Y. Frankel, J. F. Whitaker, G. A. Mourou, D. Hulin, A. Antonetti, M. Van Hove, W. De Raedt, P. Crozat e H. Hafdallah. "Picosecond Pseudomorphic AlGaAs/InGaAs MODFET Large-Signal Switching Measured by Electro-Optic Sampling". In International Conference on Ultrafast Phenomena. Washington, D.C.: Optica Publishing Group, 1992. http://dx.doi.org/10.1364/up.1992.tuc15.
Texto completo da fontePranayanuntana, Poramate, e Weerawat Khwankaew. "An Electronically Adjustable Amplitude of OTA-Based Sinusoidal Nonlinear Oscillator". In 2009 International Conference on Digital Image Processing, ICDIP. IEEE, 2009. http://dx.doi.org/10.1109/icdip.2009.24.
Texto completo da fonteRicart, J., J. Pons e M. Dominguez. "Iterative maps for the nonlinear Pulsed Digital Oscillator for MEMS". In 2007 Spanish Conference on Electron Devices. IEEE, 2007. http://dx.doi.org/10.1109/sced.2007.383957.
Texto completo da fonteGabrielli, L., M. Giobbi, S. Squartini e V. Valimaki. "A nonlinear second-order digital oscillator for Virtual Acoustic Feedback". In ICASSP 2014 - 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2014. http://dx.doi.org/10.1109/icassp.2014.6855055.
Texto completo da fonte