Literatura científica selecionada sobre o tema "Dynamics of optimization"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Dynamics of optimization".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Dynamics of optimization"
Boettcher, Stefan, e Allon G. Percus. "Optimization with Extremal Dynamics". Physical Review Letters 86, n.º 23 (4 de junho de 2001): 5211–14. http://dx.doi.org/10.1103/physrevlett.86.5211.
Texto completo da fonteBennett, J. A., e G. J. Park. "Automotive Occupant Dynamics Optimization". Shock and Vibration 2, n.º 6 (1995): 471–79. http://dx.doi.org/10.1155/1995/682694.
Texto completo da fonteTamura, Kenichi, e Keiichiro Yasuda. "Spiral Dynamics Inspired Optimization". Journal of Advanced Computational Intelligence and Intelligent Informatics 15, n.º 8 (20 de outubro de 2011): 1116–22. http://dx.doi.org/10.20965/jaciii.2011.p1116.
Texto completo da fonteGay-Balmaz, François, Darryl D. Holm e Tudor S. Ratiu. "Geometric dynamics of optimization". Communications in Mathematical Sciences 11, n.º 1 (2013): 163–231. http://dx.doi.org/10.4310/cms.2013.v11.n1.a6.
Texto completo da fonteBarettin, Daniele, e Paolo Sibani. "Optimization by record dynamics". Computer Physics Communications 185, n.º 3 (março de 2014): 730–35. http://dx.doi.org/10.1016/j.cpc.2013.10.030.
Texto completo da fonteBoettcher, Stefan, e Allon G. Percus. "Optimization with extremal dynamics". Complexity 8, n.º 2 (novembro de 2002): 57–62. http://dx.doi.org/10.1002/cplx.10072.
Texto completo da fonteSchuster, Peter, e Karl Sigmund. "Dynamics of Evolutionary Optimization". Berichte der Bunsengesellschaft für physikalische Chemie 89, n.º 6 (junho de 1985): 668–82. http://dx.doi.org/10.1002/bbpc.19850890620.
Texto completo da fonteZhang, Jing, Xiaokai Zhu, Te Chen e Guowei Dou. "Optimal Dynamics Control in Trajectory Tracking of Industrial Robots Based on Adaptive Gaussian Pseudo-Spectral Algorithm". Algorithms 18, n.º 1 (3 de janeiro de 2025): 18. https://doi.org/10.3390/a18010018.
Texto completo da fonteLurie, K. A. "MATERIAL OPTIMIZATION AND DYNAMIC MATERIALS". Cybernetics and Physics, Volume 10, 2021, Number 2 (1 de outubro de 2021): 84–87. http://dx.doi.org/10.35470/2226-4116-2021-10-2-84-87.
Texto completo da fonteJiang, Shuai, Yuanpeng Lin, Jianan Liu, Linjing Xiao e Shuaishuai Zhang. "Dynamics Optimization Research and Dynamics Accuracy and Reliability Analysis of a Multi-Link Mechanism with Clearances". Machines 10, n.º 8 (16 de agosto de 2022): 698. http://dx.doi.org/10.3390/machines10080698.
Texto completo da fonteTeses / dissertações sobre o assunto "Dynamics of optimization"
Marsden, Christopher J. "Nonlinear dynamics of pattern recognition and optimization". Thesis, Loughborough University, 2012. https://dspace.lboro.ac.uk/2134/10694.
Texto completo da fonteZhu, Yitao. "Sensitivity Analysis and Optimization of Multibody Systems". Diss., Virginia Tech, 2015. http://hdl.handle.net/10919/71649.
Texto completo da fontePh. D.
Lei, Zhen. "Isogeometric shell analysis and optimization for structural dynamics". Thesis, Ecully, Ecole centrale de Lyon, 2015. http://www.theses.fr/2015ECDL0028/document.
Texto completo da fonteIsogeometric method is a promising method in bridging the gap between the computer aided design and computer aided analysis. No information is lost when transferring the design model to the analysis model. It is a great advantage over the traditional finite element method, where the analysis model is only an approximation of the design model. It is advantageous for structural optimization, the optimal structure obtained will be a design model. In this thesis, the research is focused on the fast three dimensional free shape optimization with isogeometric shell elements. The related research, the development of isogeometric shell elements, the patch coupling in isogeometric analysis, the modal synthesis with isogeometric elements are also studied. We proposed a series of mixed grid Reissner-Minlin shell formulations. It adopts both the interpolatory basis functions, which are from the traditional FEM, and the non-interpolatory basis functions, which are from IGA, to approximate the unknown elds. It gives a natural way to define the fiber vectors in IGA Reissner-Mindlin shell formulations, where the non-interpolatory nature of IGA basis functions causes complexity. It is also advantageous for applying the rotational boundary conditions. A modified reduce quadrature scheme was also proposed to improve the quadrature eficiency, at the same time, relieve the locking in the shell formulations. We gave a method for patch coupling in isogeometric analysis. It is used to connect the adjacent patches. The classical modal synthesis method, the fixed interface Craig-Bampton method, is also used as well as the isogeometric Kirchhoff-Love shell elements. The key problem is also the connection between adjacent patches. The modal synthesis method can largely reduce the time costs in analysis concerning structural dynamics. This part of work lays a foundation for the fast shape optimization of built-up structures, where the design variables are only relevant to certain substructures. We developed a fast shape optimization framework for three dimensional thin wall structure design. The thin wall structure is modelled with isogeometric Kirchhoff-Love shell elements. The analytical sensitivity analysis is the key focus, since the gradient base optimization is normally more fast. There are two models in most optimization problem, the design model and the analysis model. The design variables are defined in the design model, however the analytical sensitivity is normally obtained from the analysis model. Although it is possible to use the same model in analysis and design under isogeomeric framework, it might give either a highly distorted optimum structure or a unreliable structural response. We developed a sensitivity mapping scheme to resolve this problem. The design sensitivity is extracted from the analysis model mesh level sensitivity, which is obtained by the discrete analytical sensitivity analysis. It provides exibility for the design variable definition. The correctness of structure response is also ensured. The modal synthesis method is also used to further improve the optimization eficiency for the built-up structure optimization concerning structural dynamics criteria
Lundvall, Johan. "Data Assimilation in Fluid Dynamics using Adjoint Optimization". Doctoral thesis, Linköping : Matematiska institutionen, Linköpings universitet, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-9684.
Texto completo da fonteROUSSEAU, Yannick, Igor MEN'SHOV e Yoshiaki NAKAMURA. "Morphing-Based Shape Optimization in Computational Fluid Dynamics". 日本航空宇宙学会, 2007. http://hdl.handle.net/2237/13876.
Texto completo da fonteMunro, Bruce C. "Airplane trajectory expansion for dynamics inversion". Thesis, This resource online, 1992. http://scholar.lib.vt.edu/theses/available/etd-07102009-040551/.
Texto completo da fonteWu, Kailiang. "Modeling the semiconductor industry dynamics". Thesis, Massachusetts Institute of Technology, 2008. http://hdl.handle.net/1721.1/45280.
Texto completo da fonteIncludes bibliographical references (p. 89-92).
The semiconductor industry is an exciting and challenging industry. Strong demand at the application end, plus the high capital intensity and rapid technological innovation in manufacturing, makes it difficult to manage supply chain planning and investment in technology transitions. Better understanding the essence of the industry dynamics will help firms win competitive advantages in this turbulent market. In this thesis, we will study semiconductor industry dynamics from three different angles: quantitative modeling, industry dynamics simulation, and strategic analysis. First, we develop a stochastic linear optimization model to address the supplier's "order fulfillment dilemma" suggested by previous empirical studies. The model provides optimal equipment production decisions that minimize the total cost under stochastic demand. To solve the large scale problem, we introduce the Bender's Decomposition, which is proven to outperform the pure Simplex method. Furthermore, we extend the basic model to multiple periods, allowing equipment inventory planning over a period of time. Second, we build a macro-level industry dynamic model using the methodology of System Dynamics. The model includes components of electronics demand projection, fabrication capacity allocation, fabrication cost structure, technology roadmapping as well as equipment production and R&D. The model generates projections of demand , industry productivity, schedule of building new fabrication, adoption of the latest process technology, etc., which are validated by actual industry data. In addition, we devise a control panel in the software that enables the users to implement flexible scenario and sensitivity analysis. Third, we propose a strategic framework for companies to pinpoint the root causes of the supply-demand mismatch problem.
(cont.) This framework considers long lead times, fast clockspeeds, Moore's Law, and risky product and technology, which transitions contribute to the pronounced volatility amplification occurring in the semiconductor industry. This framework, along with several industry successful practices, will assist companies to mitigate the demand volatility and improve their supply chain performance.
by Kailiang Wu.
S.M.
Williams, Nathan A. "Drag optimization of light trucks using computational fluid dynamics". Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2003. http://library.nps.navy.mil/uhtbin/hyperion-image/03sep%5FWilliams%5FNathan.pdf.
Texto completo da fonteThesis advisor(s): Joshua H. Gordis, Dan Boger. Includes bibliographical references (p. 157-158). Also available online.
Kwok, Terence 1973. "Neural networks with nonlinear system dynamics for combinatorial optimization". Monash University, School of Business Systems, 2001. http://arrow.monash.edu.au/hdl/1959.1/8928.
Texto completo da fonteFahrenkopf, Max A. "Optimization, Dynamics and Stability of Non-Linear Separation Processes". Research Showcase @ CMU, 2014. http://repository.cmu.edu/dissertations/390.
Texto completo da fonteLivros sobre o assunto "Dynamics of optimization"
Thévenin, Dominique, e Gábor Janiga, eds. Optimization and Computational Fluid Dynamics. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-72153-6.
Texto completo da fonteDockner, Engelbert J., Richard F. Hartl, Mikulas Luptačik e Gerhard Sorger, eds. Optimization, Dynamics, and Economic Analysis. Heidelberg: Physica-Verlag HD, 2000. http://dx.doi.org/10.1007/978-3-642-57684-3.
Texto completo da fonte1966-, Thévenin Dominique, e Janiga Gábor, eds. Optimization and computational fluid dynamics. Berlin: Springer Verlag, 2008.
Encontre o texto completo da fontePinto, Alberto, e David Zilberman, eds. Modeling, Dynamics, Optimization and Bioeconomics IV. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-78163-7.
Texto completo da fontePinto, Alberto Adrego, e David Zilberman, eds. Modeling, Dynamics, Optimization and Bioeconomics I. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04849-9.
Texto completo da fonteJunge, Oliver, Oliver Schütze, Gary Froyland, Sina Ober-Blöbaum e Kathrin Padberg-Gehle, eds. Advances in Dynamics, Optimization and Computation. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-51264-4.
Texto completo da fonteMatsumoto, Akio, ed. Optimization and Dynamics with Their Applications. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-4214-0.
Texto completo da fontePinto, Alberto A., e David Zilberman, eds. Modeling, Dynamics, Optimization and Bioeconomics III. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-74086-7.
Texto completo da fontePinto, Alberto A., e David Zilberman, eds. Modeling, Dynamics, Optimization and Bioeconomics II. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55236-1.
Texto completo da fonteN, Bolotnik N., e Gradet͡s︡kiǐ V. G, eds. Manipulation robots: Dynamics, control, and optimization. Boca Raton: CRC Press, 1994.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Dynamics of optimization"
Stavroulakis, Georgios E. "Transient Dynamics". In Applied Optimization, 187–223. Boston, MA: Springer US, 2001. http://dx.doi.org/10.1007/978-1-4615-0019-3_7.
Texto completo da fonteJazar, Reza N. "Suspension Optimization". In Vehicle Dynamics, 939–84. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4614-8544-5_14.
Texto completo da fonteGandolfo, Giancarlo. "Dynamic Optimization". In Economic Dynamics, 597–642. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-03871-6_27.
Texto completo da fonteJazar, Reza N. "Suspension Optimization". In Vehicle Dynamics, 883–943. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-53441-1_13.
Texto completo da fonteJazar, Reza N. "Suspension Optimization". In Vehicle Dynamics, 1033–94. Cham: Springer Nature Switzerland, 2025. https://doi.org/10.1007/978-3-031-74458-7_13.
Texto completo da fonteStavroulakis, Georgios E. "Steady-State Dynamics". In Applied Optimization, 157–86. Boston, MA: Springer US, 2001. http://dx.doi.org/10.1007/978-1-4615-0019-3_6.
Texto completo da fonteGhafil, Hazim Nasir, e Károly Jármai. "Dynamics". In Optimization for Robot Modelling with MATLAB, 157–73. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-40410-9_7.
Texto completo da fonteHritonenko, Natali, e Yuri Yatsenko. "Aggregate Models of Economic Dynamics". In Applied Optimization, 27–40. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4419-9733-3_2.
Texto completo da fonteLu, Yong-Zai, Yu-Wang Chen, Min-Rong Chen, Peng Chen e Guo-Qiang Chen. "Multiobjective Optimization with Extremal Dynamics". In Extremal Optimization, 165–212. Boca Raton : Auerbach Publications, 2015.: Auerbach Publications, 2018. http://dx.doi.org/10.1201/b19572-6.
Texto completo da fonteCoyle, R. G. "Optimization in practice". In System Dynamics Modelling, 249–96. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4899-2935-8_9.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Dynamics of optimization"
Karpov, N. S., I. A. Alexandrov e A. K. Lampezhev. "Optimization of Group Loading of Equipment for Multiproduct Manufacturing". In 2024 Dynamics of Systems, Mechanisms and Machines (Dynamics), 1–5. IEEE, 2024. https://doi.org/10.1109/dynamics64718.2024.10838665.
Texto completo da fonteKhusainov, Emil, e Vasily Anikin. "Methodology of Construction of Heuristic Algorithm for Optimization of Electrical Engineering Complexes". In 2024 Dynamics of Systems, Mechanisms and Machines (Dynamics), 1–5. IEEE, 2024. https://doi.org/10.1109/dynamics64718.2024.10838661.
Texto completo da fonteKulbida, U. N., O. N. Kaneva e A. V. Zykina. "Media planning optimization treatment". In 2014 Dynamics of Systems, Mechanisms and Machines (Dynamics). IEEE, 2014. http://dx.doi.org/10.1109/dynamics.2014.7005673.
Texto completo da fonteSemenikhin, Sviatoslav, e Liudmila Denisova. "Learning to rank based on multi-criteria optimization". In 2017 Dynamics of Systems, Mechanisms and Machines (Dynamics). IEEE, 2017. http://dx.doi.org/10.1109/dynamics.2017.8239503.
Texto completo da fonteDenisova, Liudmila A., e Vitalii A. Meshcheryakov. "Control system synthesis based on multicriteria optimization using genetic algorithm". In 2017 Dynamics of Systems, Mechanisms and Machines (Dynamics). IEEE, 2017. http://dx.doi.org/10.1109/dynamics.2017.8239446.
Texto completo da fonteZadorozhnyi, V. N., e T. R. Zakharenkova. "Optimization of channel distribution over nodes in networks with fractal traffic". In 2016 Dynamics of Systems, Mechanisms and Machines (Dynamics). IEEE, 2016. http://dx.doi.org/10.1109/dynamics.2016.7819112.
Texto completo da fonteMakkapati, Satheesh, Steve Poe, Kim Ku e James Dopirak. "Valvetrain dynamics optimization". In 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1998. http://dx.doi.org/10.2514/6.1998-4785.
Texto completo da fonteAnfilofiev, A. E., I. A. Hodashinsky e O. O. Evsutin. "Algorithm for tuning fuzzy network attack classifiers based on invasive weed optimization". In 2014 Dynamics of Systems, Mechanisms and Machines (Dynamics). IEEE, 2014. http://dx.doi.org/10.1109/dynamics.2014.7005632.
Texto completo da fonteKolokolov, Alexander A., Alexandra V. Artemova e Irina E. Kan. "Computer-aided design of some assortment groups of complex products using discrete optimization". In 2014 Dynamics of Systems, Mechanisms and Machines (Dynamics). IEEE, 2014. http://dx.doi.org/10.1109/dynamics.2014.7005667.
Texto completo da fonteMashkov, Yury K., Dmitry N. Korotaev, Marina Yu Baybaratskaya e Botagoz Sh Alimbaeva. "Research and optimization of technological modes of electro-spark processing details of tribosistem". In 2014 Dynamics of Systems, Mechanisms and Machines (Dynamics). IEEE, 2014. http://dx.doi.org/10.1109/dynamics.2014.7005682.
Texto completo da fonteRelatórios de organizações sobre o assunto "Dynamics of optimization"
Arguello, Bryan, Nathan Stewart, Matthew Hoffman, Bethany Nicholson, Richard Garrett e Emily Moog. Dynamics Informed Optimization forResilient Energy Systems. Office of Scientific and Technical Information (OSTI), outubro de 2022. http://dx.doi.org/10.2172/1893998.
Texto completo da fonteNegre, Christian, Anders Niklasson, Joshua Finkelstein e Michael Wall. Next Generation Quantum Based Molecular Dynamics: Hybrid Performance Optimization. Office of Scientific and Technical Information (OSTI), março de 2023. http://dx.doi.org/10.2172/1963617.
Texto completo da fonteRamamurti, Ravi, e William C. Sandberg. Computational Fluid Dynamics Study for Optimization of a Fin Design. Fort Belvoir, VA: Defense Technical Information Center, setembro de 2005. http://dx.doi.org/10.21236/ada441476.
Texto completo da fonteBewley, Thomas R. Adjoint-Based Optimization and Control of Complex Dynamics in Fluid Systems. Fort Belvoir, VA: Defense Technical Information Center, setembro de 2005. http://dx.doi.org/10.21236/ada441360.
Texto completo da fontePulay, Peter, e Jon Baker. Efficient Modeling of Large Molecules: Geometry Optimization Dynamics and Correlation Energy. Fort Belvoir, VA: Defense Technical Information Center, abril de 2003. http://dx.doi.org/10.21236/ada416248.
Texto completo da fonteShanbhag, Uday V., Tamer Basar, Sean Meyn e Prashant Mehta. EXTENDING THE REALM OF OPTIMIZATION FOR COMPLEX SYSTEMS: UNCERTAINTY, COMPETITION, AND DYNAMICS. Office of Scientific and Technical Information (OSTI), outubro de 2013. http://dx.doi.org/10.2172/1095695.
Texto completo da fontePasupuleti, Murali Krishna. Mathematical Modeling for Machine Learning: Theory, Simulation, and Scientific Computing. National Education Services, março de 2025. https://doi.org/10.62311/nesx/rriv125.
Texto completo da fonteBylsma, Wesley. Simplified Dynamics and Mobility Factors for Multi-Disciplinary Optimization of an Occupant Centric Platform. Fort Belvoir, VA: Defense Technical Information Center, abril de 2012. http://dx.doi.org/10.21236/ada559920.
Texto completo da fonteSlapikas, Robert, Anindya Ghoshal, Luis Bravo, Muthuvel Murugan e Douglas Wolfe. Molecular Dynamics Analysis and Optimization of Ultra-High-Temperature Ceramic (UHTC)Compositions for Propulsion. Aberdeen Proving Ground, MD: DEVCOM Army Research Laboratory, junho de 2022. http://dx.doi.org/10.21236/ad1171344.
Texto completo da fonteSundaryanto, Bagus, e Yanis C. Yortsos. Optimization of Fluid Front Dynamics in Porous Media Using Rate Control: I. Equal Mobility Fluids. Office of Scientific and Technical Information (OSTI), outubro de 1999. http://dx.doi.org/10.2172/13828.
Texto completo da fonte