Artigos de revistas sobre o tema "Electrical-optical modulator"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Electrical-optical modulator".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
M. A. Eid, Mahmoud, Ashraf S. Seliem, Ahmed Nabih Zaki Rashed, Abd El-Naser A. Mohammed, Mohamed Yassin Ali, and Shaimaa S. Abaza. "The key management of direct/external modulation semiconductor laser response systems for relative intensity noise control." Indonesian Journal of Electrical Engineering and Computer Science 21, no. 2 (2021): 968. http://dx.doi.org/10.11591/ijeecs.v21.i2.pp968-977.
Texto completo da fonteZhou, Zhipeng, Zean Li, Cheng Qiu, et al. "A Design of High-Efficiency: Vertical Accumulation Modulators Based on Silicon Photonics." Nanomaterials 13, no. 24 (2023): 3157. http://dx.doi.org/10.3390/nano13243157.
Texto completo da fonteSupasai, Wisut, Apirat Siritaratiwat, Chavis Srichan, et al. "Enhancing modulation performance by design of hybrid plasmonic optical modulator integrating multi-layer graphene and TiO2 on silicon waveguides." Nanotechnology 35, no. 31 (2024): 315201. http://dx.doi.org/10.1088/1361-6528/ad43f2.
Texto completo da fonteThomson, David J., Weiwei Zhang, Ke Li, et al. "Silicon photonics for high data rate applications -INVITED." EPJ Web of Conferences 238 (2020): 01005. http://dx.doi.org/10.1051/epjconf/202023801005.
Texto completo da fonteGosciniak, Jacek. "Ultra-compact nonvolatile plasmonic phase change modulators and switches with dual electrical–optical functionality." AIP Advances 12, no. 3 (2022): 035321. http://dx.doi.org/10.1063/5.0082094.
Texto completo da fonteTahersima, Mohammad H., Zhizhen Ma, Yaliang Gui, et al. "Coupling-enhanced dual ITO layer electro-absorption modulator in silicon photonics." Nanophotonics 8, no. 9 (2019): 1559–66. http://dx.doi.org/10.1515/nanoph-2019-0153.
Texto completo da fonteWu, Zhaoyang, Shuqing Lin, Siyuan Yu, and Yanfeng Zhang. "Submilliwatt Silicon Nitride Thermo-Optic Modulator Operating at 532 nm." Photonics 11, no. 3 (2024): 213. http://dx.doi.org/10.3390/photonics11030213.
Texto completo da fonteFeng, Song, and Bin Xue. "Micro-Nano Electro-Optic Modulator Structure Based on the Si/SiGe/Si Material." Journal of Nanoelectronics and Optoelectronics 15, no. 6 (2020): 693–99. http://dx.doi.org/10.1166/jno.2020.2796.
Texto completo da fonteOgawa, Kensuke. "Increase in Modulation Speed of Silicon Photonics Modulator with Quantum-Well Slab Wings: New Insights from a Numerical Study." Photonics 11, no. 6 (2024): 535. http://dx.doi.org/10.3390/photonics11060535.
Texto completo da fonteHu, Xiao, and Jian Wang. "Design of graphene-based polarization-insensitive optical modulator." Nanophotonics 7, no. 3 (2018): 651–58. http://dx.doi.org/10.1515/nanoph-2017-0088.
Texto completo da fonteFélix Rosa, María, Lotte Rathgeber, Raik Elster, et al. "Design of a carrier-depletion Mach-Zehnder modulator in 250 nm silicon-on-insulator technology." Advances in Radio Science 15 (December 5, 2017): 269–81. http://dx.doi.org/10.5194/ars-15-269-2017.
Texto completo da fonteAbd. Al-Salam, Abdulrazak. "Evaluation of Mtf for Fractal Optical Modulator to Znse." University of Thi-Qar Journal of Science 4, no. 4 (2014): 152–59. http://dx.doi.org/10.32792/utq/utjsci/v4i4.685.
Texto completo da fonteL. Jabbar, Mohammed, and Abbas Shwya Alwan. "Study of Efficiency Fractal Optical Modulator for insulator material by testing modulation transfer function." University of Thi-Qar Journal of Science 6, no. 2 (2017): 113–20. http://dx.doi.org/10.32792/utq/utjsci/v6i2.17.
Texto completo da fonteYang, Tao, Lutong Cai, Zhanhua Huang, and Lin Zhang. "High-Linearity Dual-Parallel Mach–Zehnder Modulators in Thin-Film Lithium Niobate." Photonics 11, no. 10 (2024): 987. http://dx.doi.org/10.3390/photonics11100987.
Texto completo da fonteBelhassen, Jérémy, Zeev Zalevsky, and Avi Karsenty. "Optical Polarization Sensitive Ultra-Fast Switching and Photo-Electrical Device." Nanomaterials 9, no. 12 (2019): 1743. http://dx.doi.org/10.3390/nano9121743.
Texto completo da fonteMittal, Ashok, and Asok De. "Integrated Balanced BPSK Modulator for Millimeter Wave Systems." Active and Passive Electronic Components 2007 (2007): 1–4. http://dx.doi.org/10.1155/2007/69515.
Texto completo da fonteYin, Yihui, Jiayu Yang, Haiou Li, Wanli Yang, Yue Li, and Hanyu Li. "Design of High-Speed Thin-Film Lithium Niobate Modulator Utilizing Flip-Chip Bonding with Bump Contacts." Electronics 13, no. 22 (2024): 4463. http://dx.doi.org/10.3390/electronics13224463.
Texto completo da fonteBhowmik, Tanmay, and Debabrata Sikdar. "Parallel directional coupler based dual-polarization electro-absorption modulator using epsilon near-zero material." Journal of Physics D: Applied Physics 55, no. 13 (2021): 135107. http://dx.doi.org/10.1088/1361-6463/ac4455.
Texto completo da fonteLiu, Zhe, Dayong Wang, Weimin Zhu, et al. "Microwave Photonics Broadband Doppler Velocity Simulator with High Spurious Suppression Ratio by Using Serrodyne Modulation." Photonics 11, no. 4 (2024): 357. http://dx.doi.org/10.3390/photonics11040357.
Texto completo da fonteDeshours, Frédérique, Anne-Laure Billabert, Catherine Algani, Fabrice Blache, Christian Rumelhard, and Georges Alquié. "A 40 Gbps electro-absorption modulator integrated laser modeling method for optical transmitter in ultra-wide band radio-over-fiber systems." International Journal of Microwave and Wireless Technologies 1, no. 6 (2009): 511–19. http://dx.doi.org/10.1017/s1759078709990791.
Texto completo da fonteMahrous, Hany, Mostafa Fedawy, Mira Abboud, W. Fikry, and Michael Gad. "A Machine Learning Approach for Efficient Mach-Zehnder Modulator Design." Journal of Advanced Research in Applied Sciences and Engineering Technology 64, no. 4 (2025): 173–86. https://doi.org/10.37934/araset.64.4.173186.
Texto completo da fonteGuan, Mengyuan, Lu Wang, Fangping Li, et al. "Photonic Generation of Background-Free Phase-Coded Microwave Pulses with Elimination of Power Fading." Photonics 10, no. 1 (2023): 66. http://dx.doi.org/10.3390/photonics10010066.
Texto completo da fonteEpikhin, V. M., M. M. Mazur, A. V. Ryabinin, P. V. Kamaushkin, and L. I. Mazur. "Acousto-optic modulators/frequency shifters with single-mode optic fibers." Journal of Physics: Conference Series 2127, no. 1 (2021): 012037. http://dx.doi.org/10.1088/1742-6596/2127/1/012037.
Texto completo da fonteJosten, Arne, Benedikt Baeuerle, Romain Bonjour, Wolfgang Heni, and Juerg Leuthold. "Optical Transmitters without Driver Amplifiers—Optimal Operation Conditions." Applied Sciences 8, no. 9 (2018): 1652. http://dx.doi.org/10.3390/app8091652.
Texto completo da fonteKareem, Marwa M., Sameer A. S. Lafta, Hadi Fakhir Hashim, Raed Khalid Al-Azzawi, and Adnan Hussein Ali. "Analyzing the BER and optical fiber length performances in OFDM RoF links." Indonesian Journal of Electrical Engineering and Computer Science 23, no. 3 (2021): 1501. http://dx.doi.org/10.11591/ijeecs.v23.i3.pp1501-1509.
Texto completo da fonteKareem, Marwah M., Sameer A. S. Lafta, Hadi Fakhir Hashim, Raed Khalid Al-Azzawi, and Adnan Hussein Ali. "Analyzing the BER and optical fiber length performances in OFDM RoF links." Indonesian Journal of Electrical Engineering and Computer Science 23, no. 3 (2021): 1501–9. https://doi.org/10.11591/ijeecs.v23.i3.pp1501-1509.
Texto completo da fonteSun, Feiying, Changbin Nie, Xingzhan Wei, Hu Mao, Yupeng Zhang, and Guo Ping Wang. "All-optical modulation based on MoS2-Plasmonic nanoslit hybrid structures." Nanophotonics 10, no. 16 (2021): 3957–65. http://dx.doi.org/10.1515/nanoph-2021-0279.
Texto completo da fonteTurpaud, Victor, Thi-Hao-Nhi Nguyen, Natnicha Koompai, et al. "Tunable electro-optic frequency-comb generation around 8 µm wavelength." EPJ Web of Conferences 287 (2023): 07008. http://dx.doi.org/10.1051/epjconf/202328707008.
Texto completo da fonteXie, Xiaobing, Chao Luo, Huiyun Tang, Jinfeng Du, Ming Li, and Wei Li. "Photonic-Assisted Multi-Tone Microwave Frequency Measurement Based on Pulse Identification." Photonics 12, no. 1 (2024): 1. https://doi.org/10.3390/photonics12010001.
Texto completo da fonteXu, Yin, Feng Li, Zhe Kang, et al. "Hybrid Graphene-Silicon Based Polarization-Insensitive Electro-Absorption Modulator with High-Modulation Efficiency and Ultra-Broad Bandwidth." Nanomaterials 9, no. 2 (2019): 157. http://dx.doi.org/10.3390/nano9020157.
Texto completo da fonteJu, Young-Gu. "A Conceptual Study of Rapidly Reconfigurable and Scalable Optical Convolutional Neural Networks Based on Free-Space Optics Using a Smart Pixel Light Modulator." Computers 14, no. 3 (2025): 111. https://doi.org/10.3390/computers14030111.
Texto completo da fonteHuang, Tao, Zhiqiang Fan, Jun Su, and Qi Qiu. "Time Jitter Analysis of an Optical Signal Based on Gated On-Off Optical Sampling and Dual-Dirac Modeling." Electronics 12, no. 3 (2023): 633. http://dx.doi.org/10.3390/electronics12030633.
Texto completo da fonteArmel, Bimogo Joseph, Essiben Dikoundou Jean-Francois, and Ihonock Eyembe Luc. "Comparative evaluation of optical amplifiers in passive optical access networks." Indonesian Journal of Electrical Engineering and Computer Science 27, no. 3 (2022): 1452. http://dx.doi.org/10.11591/ijeecs.v27.i3.pp1452-1461.
Texto completo da fonteArmel, Bimogo Joseph, Essiben Dikoundou Jean-Francois, and Ihonock Eyembe Luc. "Comparative evaluation of optical amplifiers in passive optical access networks." Indonesian Journal of Electrical Engineering and Computer Science 27, no. 3 (2022): 1452–61. https://doi.org/10.11591/ijeecs.v27.i3.pp1452-1461.
Texto completo da fonteHou, Songyan, Hao Hu, Zhihong Liu, Weichuan Xing, Jincheng Zhang, and Yue Hao. "High-Speed Electro-Optic Modulators Based on Thin-Film Lithium Niobate." Nanomaterials 14, no. 10 (2024): 867. http://dx.doi.org/10.3390/nano14100867.
Texto completo da fonteZhai, Kunpeng, Xuhua Cao, Sha Zhu, et al. "An All-Optical Microwave Frequency Divider with Tunable Division Factors Based on DP-DPMZM." Photonics 10, no. 2 (2023): 138. http://dx.doi.org/10.3390/photonics10020138.
Texto completo da fonteChen, Yifei, Mingxin Liu, Hongsheng Niu, et al. "Breaking efficiency-bandwidth limits of integrated silicon modulator using rib waveguide slab region doping design." Journal of Optics 26, no. 10 (2024): 105801. http://dx.doi.org/10.1088/2040-8986/ad7519.
Texto completo da fonteKUKHTAREV, N., T. KUKHTAREVA, M. E. EDWARDS, et al. "PHOTOINDUCED OPTICAL AND ELECTRICAL HIGH-VOLTAGE PULSATIONS AND PATTERN FORMATION IN PHOTOREFRACTIVE CRYSTALS." Journal of Nonlinear Optical Physics & Materials 11, no. 04 (2002): 445–53. http://dx.doi.org/10.1142/s0218863502001164.
Texto completo da fonteBin Zhang, Bin Zhang, Shiyu Liu Shiyu Liu, Xianzhu Tang Xianzhu Tang, and and Jian'gang Lu and Jian'gang Lu. "Adaptive modulation system for liquid crystal phase modulator." Chinese Optics Letters 14, no. 9 (2016): 090604–90607. http://dx.doi.org/10.3788/col201614.090604.
Texto completo da fonteXu, Bin, Yao Ji, Kai Liu, and Jinhua Li. "Piezoelectric MEMS Mirror with Lissajous Scanning for Automobile Adaptive Laser Headlights." Micromachines 13, no. 7 (2022): 996. http://dx.doi.org/10.3390/mi13070996.
Texto completo da fonteZou, Weiwen, Lei Yu, Shuo Yang, and Jianping Chen. "Optical pulse compression reflectometry based on single-sideband modulator driven by electrical frequency-modulated pulse." Optics Communications 367 (May 2016): 155–60. http://dx.doi.org/10.1016/j.optcom.2016.01.034.
Texto completo da fonteWang, Dongfei, Xiangqing Wang, Xiaokun Yang, et al. "A Novel Frequency Double Millimeter Wave Signal Generation Scheme with Optical Carrier Suppression Based on a Single Polarization Modulator." Journal of Nanoelectronics and Optoelectronics 17, no. 6 (2022): 934–38. http://dx.doi.org/10.1166/jno.2022.3273.
Texto completo da fonteDing, Jianfeng, Sizhu Shao, Lei Zhang, Xin Fu, and Lin Yang. "Silicon 16-QAM optical modulator driven by four binary electrical signals." Optics Letters 42, no. 8 (2017): 1636. http://dx.doi.org/10.1364/ol.42.001636.
Texto completo da fonteChen, Xu, Xinqiao Chen, Siyuan Dai, Bin Li, and Ling Wang. "A Novel Inserting Pilot Radio over Fiber System without the Bit Walk-Off Effect for the Generation and Distribution of Frequency 16-Tupling Millimeter Waves by Mach–Zehnder Modulators." Photonics 11, no. 5 (2024): 410. http://dx.doi.org/10.3390/photonics11050410.
Texto completo da fonteChen, Jigen, Mengli Liu, Ximei Liu, Yuyi Ouyang, Wenjun Liu, and Zhiyi Wei. "The SnSSe SA with high modulation depth for passively Q-switched fiber laser." Nanophotonics 9, no. 8 (2020): 2549–55. http://dx.doi.org/10.1515/nanoph-2020-0113.
Texto completo da fonteStepanenko, Mikhail, Igor Yunusov, Vadim Arykov, Pavel Troyan, and Yury Zhidik. "Multi-Parameter Optimization of an InP Electro-Optic Modulator." Symmetry 12, no. 11 (2020): 1920. http://dx.doi.org/10.3390/sym12111920.
Texto completo da fonteLowery, Arthur James. "All-optical DAC using counter-propagating optical and electrical pulses in a Mach-Zehnder modulator." Optics Express 22, no. 21 (2014): 26429. http://dx.doi.org/10.1364/oe.22.026429.
Texto completo da fonteEbisu, Ayaka, Takahito Aoto, and Tsuyoshi Takatani. "Polarization-Modulated Optical Homodyne for Time-of-Flight Imaging with Standard CMOS Sensors." Sensors 25, no. 6 (2025): 1886. https://doi.org/10.3390/s25061886.
Texto completo da fonteYe, Longfang, Kouxiang Yuan, Chunhui Zhu, Yao Zhang, Yong Zhang, and Kunzhong Lai. "Broadband high-efficiency near-infrared graphene phase modulators enabled by metal–nanoribbon integrated hybrid plasmonic waveguides." Nanophotonics 11, no. 3 (2021): 613–23. http://dx.doi.org/10.1515/nanoph-2021-0709.
Texto completo da fonteZeng, Hongxin, Sen Gong, Lan Wang, et al. "A review of terahertz phase modulation from free space to guided wave integrated devices." Nanophotonics 11, no. 3 (2021): 415–37. http://dx.doi.org/10.1515/nanoph-2021-0623.
Texto completo da fonte