Siga este link para ver outros tipos de publicações sobre o tema: Energy Localization.

Artigos de revistas sobre o tema "Energy Localization"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Energy Localization".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

Jurdak, Raja, Peter Corke, Alban Cotillon, Dhinesh Dharman, Chris Crossman, and Guillaume Salagnac. "Energy-efficient localization." ACM Transactions on Sensor Networks 9, no. 2 (2013): 1–33. http://dx.doi.org/10.1145/2422966.2422980.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Costanzo, Alessandra, Davide Dardari, Jurgis Aleksandravicius, et al. "Energy Autonomous UWB Localization." IEEE Journal of Radio Frequency Identification 1, no. 3 (2017): 228–44. http://dx.doi.org/10.1109/jrfid.2018.2792538.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Rosen, Nathan. "Localization of gravitational energy." Foundations of Physics 15, no. 10 (1985): 997–1008. http://dx.doi.org/10.1007/bf00732842.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Ketelaar, J. A. A., and J. van Dranen. "The energy of localization." Recueil des Travaux Chimiques des Pays-Bas 69, no. 4 (2010): 477–81. http://dx.doi.org/10.1002/recl.19500690412.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Absalamov, R. A., Т. J. Radjabov, I. R. Tolibjanov, and B. T. Ibragimov. "Regularity Of Localization Of Fires At Energy Facilities In Uzbekistan." American Journal of Applied sciences 03, no. 02 (2021): 111–18. http://dx.doi.org/10.37547/tajas/volume03issue02-13.

Texto completo da fonte
Resumo:
In the article, the author analyzes emergencies at power plants in Uzbekistan, including research by scientists who conducted their research on extinguishing and localizing fires with the use of appropriate technical means at energy facilities, taking into account the observance of safety measures for energy facilities that have the property of electric shock to firefighters. In addition, the author provides a mathematical analysis of a fire event using the multi-interval method and formulates the appropriate conclusions. At the same time, the author proposes the use of the latest information
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Ahmed, M., and S. Moazzam Hossain. "Energy Localization in Curved Spacetime." Progress of Theoretical Physics 93, no. 5 (1995): 901–3. http://dx.doi.org/10.1143/ptp/93.5.901.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Medvedev, N. N., M. D. Starostenkov, and M. E. Manley. "Energy localization on theAlsublattice ofPt3AlwithL12order." Journal of Applied Physics 114, no. 21 (2013): 213506. http://dx.doi.org/10.1063/1.4837598.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Dauxois, Thierry, and Michel Peyrard. "Energy localization in nonlinear lattices." Physical Review Letters 70, no. 25 (1993): 3935–38. http://dx.doi.org/10.1103/physrevlett.70.3935.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Takeno, S., and G. P. Tsironis. "Energy localization and molecular dissociation." Physics Letters A 343, no. 4 (2005): 274–80. http://dx.doi.org/10.1016/j.physleta.2004.11.066.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Cheng, Qiang, and Tie Jun Cui. "Energy localization using anisotropic metamaterials." Physics Letters A 367, no. 4-5 (2007): 259–62. http://dx.doi.org/10.1016/j.physleta.2007.03.033.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Brown, D. W., and L. Bernstein. "Spontaneous Localization of Vibrational Energy." Le Journal de Physique IV 05, no. C4 (1995): C4–461—C4–474. http://dx.doi.org/10.1051/jp4:1995437.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Paniagua, Juan Carlos, and Albert Moyano. "Localization-consistent electronic energy partitions." International Journal of Quantum Chemistry 65, no. 2 (1997): 121–26. http://dx.doi.org/10.1002/(sici)1097-461x(1997)65:2<121::aid-qua3>3.0.co;2-y.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Liu, Haifeng, Feng Xia, Zhuo Yang, and Yang Cao. "An energy-efficient localization strategy for smartphones." Computer Science and Information Systems 8, no. 4 (2011): 1117–28. http://dx.doi.org/10.2298/csis110430065l.

Texto completo da fonte
Resumo:
In recent years, smartphones have become prevalent. Much attention is being paid to developing and making use of mobile applications that require position information. The Global Positioning System (GPS) is a very popular localization technique used by these applications because of its high accuracy. However, GPS incurs an unacceptable energy consumption, which severely limits the use of smartphones and reduces the battery lifetime. Then an urgent requirement for these applications is a localization strategy that not only provides enough accurate position information to meet users' need but al
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Yang, Yankan, Baoqi Huang, Zhendong Xu, and Runze Yang. "A Fuzzy Logic-Based Energy-Adaptive Localization Scheme by Fusing WiFi and PDR." Wireless Communications and Mobile Computing 2023 (January 7, 2023): 1–17. http://dx.doi.org/10.1155/2023/9052477.

Texto completo da fonte
Resumo:
Fusing WiFi fingerprint localization and pedestrian dead reckoning (PDR) on smartphones is attractive because of their obvious complementarity in localization accuracy and energy consumption. Although fusion localization algorithms tend to improve localization accuracy, extra hardware and software involved will result in extra computations, such that energy consumption is inevitably increased. Thus, in this study, we propose a novel fusion localization scheme based on fuzzy logic, which aims to achieve ideal localization accuracy by consuming as little energy as possible. Specifically, energy-
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Chulaevsky, Victor. "From Fixed-Energy Localization Analysis to Dynamical Localization: An Elementary Path." Journal of Statistical Physics 154, no. 6 (2014): 1391–429. http://dx.doi.org/10.1007/s10955-014-0937-7.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Chaves-Silva, F. W., J. P. Puel, and M. C. Santos. "Localization of energy and localized controllability." ESAIM: Control, Optimisation and Calculus of Variations 27 (2021): 29. http://dx.doi.org/10.1051/cocv/2021005.

Texto completo da fonte
Resumo:
We will consider both the controlled Schrödinger equation and the controlled wave equation on a bounded open set Ω of ℝN during an interval of time (0, T), with T &gt; 0. The control is distributed and acts on a nonempty open subdomain ω of Ω. On the other hand, we consider another open subdomain D of Ω and the localized energy of the solution in D. The first question we want to study is the possibility of obtaining a prescribed value of this local energy at time T by choosing the control adequately. It turns out that this question is equivalent to a problem of exact or approximate controllabi
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Berchialla, Luisa, Luigi Galgani, and Antonio Giorgilli. "Localization of energy in FPU chains." Discrete & Continuous Dynamical Systems - A 11, no. 4 (2004): 855–66. http://dx.doi.org/10.3934/dcds.2004.11.855.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Moscatelli, Marco, Claudia Comi, and Jean-Jacques Marigo. "Energy Localization through Locally Resonant Materials." Materials 13, no. 13 (2020): 3016. http://dx.doi.org/10.3390/ma13133016.

Texto completo da fonte
Resumo:
Among the attractive properties of metamaterials, the capability of focusing and localizing waves has recently attracted research interest to establish novel energy harvester configurations. In the same frame, in this work, we develop and optimize a system for concentrating mechanical energy carried by elastic anti-plane waves. The system, resembling a Fabry-Pérot interferometer, has two barriers composed of Locally Resonant Materials (LRMs) and separated by a homogeneous internal cavity. The attenuation properties of the LRMs allow for the localization of waves propagating at particular frequ
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Nester, J. M. "Special orthonormal frames and energy localization." Classical and Quantum Gravity 8, no. 1 (1991): L19—L23. http://dx.doi.org/10.1088/0264-9381/8/1/004.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Piazza, Francesco, Stefano Lepri, and Roberto Livi. "Cooling nonlinear lattices toward energy localization." Chaos: An Interdisciplinary Journal of Nonlinear Science 13, no. 2 (2003): 637–45. http://dx.doi.org/10.1063/1.1535770.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Choi, Taehwa, Yohan Chon, and Hojung Cha. "Energy-efficient WiFi scanning for localization." Pervasive and Mobile Computing 37 (June 2017): 124–38. http://dx.doi.org/10.1016/j.pmcj.2016.07.005.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Maluf, José W. "Localization of energy in general relativity." Journal of Mathematical Physics 36, no. 8 (1995): 4242–47. http://dx.doi.org/10.1063/1.530959.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Fern�ndez, Ariel. "RNA self-splicing and energy localization." International Journal of Theoretical Physics 30, no. 2 (1991): 129–36. http://dx.doi.org/10.1007/bf00670709.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Balinsky, Alexander A., and Alexey E. Tyukov. "On localization of pseudo-relativistic energy." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 462, no. 2067 (2006): 897–912. http://dx.doi.org/10.1098/rspa.2005.1606.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Casher, A., E. G. Floratos, and N. C. Tsamis. "String localization and vacuum energy finiteness." Physics Letters B 199, no. 3 (1987): 377–79. http://dx.doi.org/10.1016/0370-2693(87)90937-3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

Taheri, Mostafa, and Seyed Ahmad Motamedi. "Transceiver Optimization for ToA-Based Localization of Mobile WSN." Journal of Circuits, Systems and Computers 25, no. 09 (2016): 1650100. http://dx.doi.org/10.1142/s0218126616501000.

Texto completo da fonte
Resumo:
One of the main parameters in wireless sensor networks (WSNs) is the design of energy-efficient protocols. And accuracy is another central goal of localization. Since sensor nodes run on battery power, any WSN application and accurate localization needs to be energy-efficient. In this paper, the accuracy of localization is increased by accurate measurement of the distance between the mobile sensors. Limit error in multiple-input multiple-output (MIMO) has been calculated by CRB method. Virtual MIMO (VMIMO) technique can obtain better localization precision and the localization is energy-effici
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Afinanisa, Qonita, Min Kyung Cho, and Hyun-A. Seong. "AMPK Localization: A Key to Differential Energy Regulation." International Journal of Molecular Sciences 22, no. 20 (2021): 10921. http://dx.doi.org/10.3390/ijms222010921.

Texto completo da fonte
Resumo:
As the central node between nutrition signaling input and the metabolic pathway, AMP-activated protein kinase (AMPK) is tightly regulated to maintain energy homeostasis. Subcellular compartmentalization of AMPK is one of the critical regulations that enables AMPK to access proper targets and generate appropriate responses to specific perturbations and different levels of stress. One of the characterized localization mechanisms is RanGTPase-driven CRM1 that recognizes the nuclear export sequence (NES) on the α subunit to translocate AMPK into the cytoplasm. Nuclear localization putatively emplo
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

Weaver, Richard. "Localization, Scaling, and Diffuse Transport of Wave Energy in Disordered Media." Applied Mechanics Reviews 49, no. 2 (1996): 126–35. http://dx.doi.org/10.1115/1.3101886.

Texto completo da fonte
Resumo:
The Anderson localization literature in structural acoustics has to date been concerned largely with applications to the vibrations of one dimensional structures, whether mono-coupled or multi-coupled, and to steady state responses in such systems. This paper presents a brief tutorial on the theory of wave localization in one and higher dimensions with an emphasis on the scaling theory of localization. It then reviews the acoustic and optical literature on wave localization with an emphasis on diffuse time domain responses to transient loads. Numerical and laboratory experiments demonstrating
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Cui, Huanqing, Junyi Zhao, Chuanai Zhou, and Na Zhang. "Localization for Wireless Sensor Networks Assisted by Two Mobile Anchors with Improved Grey Wolf Optimizer." Wireless Communications and Mobile Computing 2022 (December 29, 2022): 1–20. http://dx.doi.org/10.1155/2022/6292629.

Texto completo da fonte
Resumo:
Localization is crucial to wireless sensor networks. Among the recently proposed localization algorithms, the mobile anchor-assisted localization (MAL) algorithm seems promising. A MAL algorithm using a single mobile anchor has low energy consumption but a high localization error. Conversely, a MAL algorithm with three or more mobile anchors has minor localization errors but high energy consumption. By balancing energy consumption and localization accuracy, our study developed a localization algorithm assisted by two mobile anchors. A mobile anchor traverses the network along a double anchor S
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Manevitch, Leonid I., Agnessa Kovaleva, and Grigori Sigalov. "Nonstationary energy localization vs conventional stationary localization in weakly coupled nonlinear oscillators." Regular and Chaotic Dynamics 21, no. 2 (2016): 147–59. http://dx.doi.org/10.1134/s1560354716020015.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Wu, Xiaoping. "Acoustic Energy-based Sensor Localization With Unknown Transmit Energy Levels." International Journal of Ad Hoc and Ubiquitous Computing 1, no. 1 (2017): 1. http://dx.doi.org/10.1504/ijahuc.2017.10006702.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Zhou, Ziqin, and Hojjat Adeli. "Wavelet energy spectrum for time-frequency localization of earthquake energy." International Journal of Imaging Systems and Technology 13, no. 2 (2003): 133–40. http://dx.doi.org/10.1002/ima.10038.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Guo, Ying, Qinghe Han, Jinxin Wang, and Xu Yu. "Energy-aware localization algorithm for Ocean Internet of Things." Sensor Review 38, no. 2 (2018): 129–36. http://dx.doi.org/10.1108/sr-06-2017-0105.

Texto completo da fonte
Resumo:
Purpose Localization is one of the critical issues in Ocean Internet of Things (OITs). The existing research results of localization in OITs are very limited. It poses many challenges due to the difficulty of deploy beacon accurately, the difficulty of transmission distance estimation in harsh ocean environment and the underwater node mobility. This paper aims to provide a novel localization algorithm to solve these problems. Design/methodology/approach This paper takes the ship with accurate position as a beacon, analyzes the relationship between underwater energy attenuation and node distanc
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Guo, Peng, Tao Jiang, and Kui Zhang. "Novel Energy-Efficient Miner Monitoring System with Duty-Cycled Wireless Sensor Networks." International Journal of Distributed Sensor Networks 8, no. 1 (2012): 975082. http://dx.doi.org/10.1155/2012/975082.

Texto completo da fonte
Resumo:
Target monitoring is an important application of wireless sensor networks. In this paper, we develop an energy-efficient miner monitoring system with sensor nodes. To keep monitoring miners' activities in tunnels, periodical localization and timely data transmission are both required. Since the localization and data transmission much depend on the media access control (MAC) scheme, codesign of localization and MAC scheme is actually needed for the resource-constrained system, which is seldom discussed in existing related works. Moreover, as sensor nodes form an ultra-sparse network with linear
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Shawki, T. G., R. A. Sherif, and H. P. Cherukuri. "Characterization of the Flow Localization History in Dynamic Viscoplasticity." Applied Mechanics Reviews 45, no. 3S (1992): S149—S153. http://dx.doi.org/10.1115/1.3121385.

Texto completo da fonte
Resumo:
The evolution of narrow regions of intense plastic flow during the dynamic deformation of rate–sensitive materials is an outstanding problem in mechanics. A unified framework for the analysis of the pre–localization regime was recently presented by Shawki (1991a, b). In the former work, the onset of flow localization was tied to the increased importance of inertial effects. An energy criterion was developed for the characterization of localization initiation. On the other hand, the aforementioned criterion does not provide the critical strain associated with severe localization. The current wo
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

T P, Mohankumar, and D. Ramesh. "New Strategies for Boosting Localization Accuracy in Wireless Sensor Nodes." International Journal of Innovative Research in Computer Science and Technology 12, no. 6 (2024): 1–6. http://dx.doi.org/10.55524/ijircst.2024.12.6.1.

Texto completo da fonte
Resumo:
Wireless Sensor Networks (WSNs), accurate and energy-efficient localization of sensor nodes remains a challenging task despite significant advancements. Current geolocation algorithms often struggle with scalability, adaptability, and energy efficiency, particularly in large-scale, dynamic environments where node failures or random shifts occur. This paper proposes a novel Secure Node Localization (SABWP-NL) approach, combining Self-Adaptive Binary Waterwheel Plant Optimization (SABWP) and Bayesian optimization to enhance localization accuracy, scalability, energy efficiency, and robustness. T
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

Wang, Tianjing, Xinjie Guan, Xili Wan, Guoqing Liu, and Hang Shen. "Energy-Level Jumping Algorithm for Global Optimization in Compressive Sensing-Based Target Localization." Sensors 19, no. 11 (2019): 2502. http://dx.doi.org/10.3390/s19112502.

Texto completo da fonte
Resumo:
Target localization is one of the essential tasks in almost applications of wireless sensor networks. Some traditional compressed sensing (CS)-based target localization methods may achieve low-precision target localization because of using locally optimal sparse solutions. Solving global optimization for the sparse recovery problem remains a challenge in CS-based target localization. In this paper, we propose a novel energy-level jumping algorithm to address this problem, which achieves high-precision target localization by solving the globally optimal sparse solution of l p -norm ( 0 &lt; p &
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

Pinto Neto, N., and P. I. Trajtenberg. "On the localization of the gravitational energy." Brazilian Journal of Physics 30, no. 1 (2000): 181–88. http://dx.doi.org/10.1590/s0103-97332000000100020.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Correia, Sérgio D., Marko Beko, Luis A. Da Silva Cruz, and Slavisa Tomic. "Elephant Herding Optimization for Energy-Based Localization." Sensors 18, no. 9 (2018): 2849. http://dx.doi.org/10.3390/s18092849.

Texto completo da fonte
Resumo:
This work addresses the energy-based source localization problem in wireless sensors networks. Instead of circumventing the maximum likelihood (ML) problem by applying convex relaxations and approximations, we approach it directly by the use of metaheuristics. To the best of our knowledge, this is the first time that metaheuristics are applied to this type of problem. More specifically, an elephant herding optimization (EHO) algorithm is applied. Through extensive simulations, the key parameters of the EHO algorithm are optimized such that they match the energy decay model between two sensor n
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Abdellatif, Mohamed. "GreenLoc: Energy Efficient Wifi-Based Indoor Localization." Qatar Foundation Annual Research Forum Proceedings, no. 2011 (November 2011): CSP20. http://dx.doi.org/10.5339/qfarf.2011.csp20.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

Xia Yu, Guan, Xin Ye Yu, Li Juan Xia, and Bai Bing Xv. "Energy Localization Using Anisotropic Left-Handed Materials." Zeitschrift für Naturforschung A 68a (February 20, 2013): 300–304. http://dx.doi.org/10.5560/zna.2012-0119.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

van Wijk, Kasper, and Matthew Haney. "Energy propagation and localization in disordered media." Journal of the Acoustical Society of America 121, no. 5 (2007): 3100. http://dx.doi.org/10.1121/1.4782007.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

Abu-Mahfouz, Adnan M., and Gerhard P. Hancke. "ALWadHA Localization Algorithm: Yet More Energy Efficient." IEEE Access 5 (2017): 6661–67. http://dx.doi.org/10.1109/access.2017.2687619.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

Bilbault, J. M., and P. Marquié. "Energy localization in a nonlinear discrete system." Physical Review E 53, no. 5 (1996): 5403–8. http://dx.doi.org/10.1103/physreve.53.5403.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

Keller, Mark W., A. Mittal, J. W. Sleight, et al. "Energy-averaged weak localization in chaotic microcavities." Physical Review B 53, no. 4 (1996): R1693—R1696. http://dx.doi.org/10.1103/physrevb.53.r1693.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

Aygün, S., M. Aygün, and I. Tarhan. "Energy-momentum localization in Marder space-time." Pramana 68, no. 1 (2007): 21–30. http://dx.doi.org/10.1007/s12043-007-0002-z.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

Zhang, Wei, and X. G. Zhao. "Dynamical localization and nondispersion of energy spectrum." Physica E: Low-dimensional Systems and Nanostructures 9, no. 4 (2001): 667–73. http://dx.doi.org/10.1016/s1386-9477(00)00283-6.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

Hayward, Sean A. "Quasi-localization of Bondi-Sachs energy loss." Classical and Quantum Gravity 11, no. 12 (1994): 3037–48. http://dx.doi.org/10.1088/0264-9381/11/12/017.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

Lubin, Dror, and Isaac Goldhirsch. "Scaling of energy localization in mesoscopic rings." Physical Review B 46, no. 4 (1992): 2617–20. http://dx.doi.org/10.1103/physrevb.46.2617.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

Coffey, C. S. "Energy localization in rapidly deforming crystalline solids." Physical Review B 32, no. 8 (1985): 5335–41. http://dx.doi.org/10.1103/physrevb.32.5335.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!