Artigos de revistas sobre o tema "Enzymatic immobilisation"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 25 melhores artigos de revistas para estudos sobre o assunto "Enzymatic immobilisation".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Schartner, Jonas, Jörn Güldenhaupt, Sarah Katharina Gaßmeyer, Katharina Rosga, Robert Kourist, Klaus Gerwert e Carsten Kötting. "Highly stable protein immobilizationviamaleimido-thiol chemistry to monitor enzymatic activity". Analyst 143, n.º 10 (2018): 2276–84. http://dx.doi.org/10.1039/c8an00301g.
Texto completo da fonteKüchler, Andreas, Jozef Adamcik, Raffaele Mezzenga, A. Dieter Schlüter e Peter Walde. "Enzyme immobilization on silicate glass through simple adsorption of dendronized polymer–enzyme conjugates for localized enzymatic cascade reactions". RSC Advances 5, n.º 55 (2015): 44530–44. http://dx.doi.org/10.1039/c5ra06268c.
Texto completo da fonteAgustian, Joni, e Lilis Hermida. "The Optimised Statistical Model for Enzymatic Hydrolysis of Tapioca by Glucoamylase Immobilised on Mesostructured Cellular Foam Silica". Bulletin of Chemical Reaction Engineering & Catalysis 14, n.º 2 (1 de agosto de 2019): 380. http://dx.doi.org/10.9767/bcrec.14.2.3078.380-390.
Texto completo da fonteWang, Yichao, Shuang Zhang, Enamul Haque, Bao Yue Zhang, Jian Zhen Ou, Jing Liu, Zhongqing Liu et al. "Immobilisation of microperoxidase-11 into layered MoO3 for applications of enzymatic conversion". Applied Materials Today 16 (setembro de 2019): 185–92. http://dx.doi.org/10.1016/j.apmt.2019.05.008.
Texto completo da fonteAvci Duman, Yonca, Gamze Tufan e A. Uğur Kaya. "Immobilisation of cellulase on vermiculite and the effects on enzymatic kinetics and thermodynamics". Applied Clay Science 197 (novembro de 2020): 105792. http://dx.doi.org/10.1016/j.clay.2020.105792.
Texto completo da fonteCampanella, L., G. Favero, M. P. Sammartino e M. Tomassetti. "Enzymatic immobilisation in kappa-carrageenan gel suitable for organic phase enzyme electrode (OPEE) assembly". Journal of Molecular Catalysis B: Enzymatic 7, n.º 1-4 (setembro de 1999): 101–13. http://dx.doi.org/10.1016/s1381-1177(99)00035-1.
Texto completo da fontePramparo, L., F. Stüber, J. Font, A. Fortuny, A. Fabregat e C. Bengoa. "Immobilisation of horseradish peroxidase on Eupergit®C for the enzymatic elimination of phenol". Journal of Hazardous Materials 177, n.º 1-3 (maio de 2010): 990–1000. http://dx.doi.org/10.1016/j.jhazmat.2010.01.017.
Texto completo da fonteHannig, C., B. Spitzmüller, H. C. Lux, M. Altenburger, A. Al-Ahmad e M. Hannig. "Efficacy of enzymatic toothpastes for immobilisation of protective enzymes in the in situ pellicle". Archives of Oral Biology 55, n.º 7 (julho de 2010): 463–69. http://dx.doi.org/10.1016/j.archoralbio.2010.03.020.
Texto completo da fonteGrosová, Z., M. Rosenberg e M. Rebroš. "Perspectives and applications of immobilised β-galactosidase in food industry – a review". Czech Journal of Food Sciences 26, No. 1 (19 de fevereiro de 2008): 1–14. http://dx.doi.org/10.17221/1134-cjfs.
Texto completo da fonteHannig, C., B. Spies, B. Spitzmüller e M. Hannig. "Efficacy of enzymatic mouth rinses for immobilisation of protective enzymes in the in situ pellicle". Archives of Oral Biology 55, n.º 1 (janeiro de 2010): 1–6. http://dx.doi.org/10.1016/j.archoralbio.2009.10.004.
Texto completo da fonteCzyzewska, Katarzyna, e Anna Trusek. "Critical Parameters in an Enzymatic Way to Obtain the Unsweet Lactose-Free Milk Using Catalase and Glucose Oxidase Co-Encapsulated into Hydrogel with Chemical Cross-Linking". Foods 12, n.º 1 (26 de dezembro de 2022): 113. http://dx.doi.org/10.3390/foods12010113.
Texto completo da fonteIkechukwu Iloh Udema. "Association-dissociation equations, distinct from Michaelis-Menten equation for the quantification of the net flux of reactants with or without immobiliser." GSC Biological and Pharmaceutical Sciences 13, n.º 1 (30 de outubro de 2020): 231–43. http://dx.doi.org/10.30574/gscbps.2020.13.1.0335.
Texto completo da fonteBoland, Susan, e Dónal Leech. "A glucose/oxygen enzymatic fuel cell based on redox polymer and enzyme immobilisation at highly-ordered macroporous gold electrodes". Analyst 137, n.º 1 (2012): 113–17. http://dx.doi.org/10.1039/c1an15537g.
Texto completo da fonteHou, Juan, Xingkang Li, Michal Kaczmarek, Pengyu Chen, Kai Li, Peng Jin, Yuanmei Liang e Maurycy Daroch. "Accelerated CO2 Hydration with Thermostable Sulfurihydrogenibium azorense Carbonic Anhydrase-Chitin Binding Domain Fusion Protein Immobilised on Chitin Support". International Journal of Molecular Sciences 20, n.º 6 (25 de março de 2019): 1494. http://dx.doi.org/10.3390/ijms20061494.
Texto completo da fonteKarunakaran, Chandran, Murugesan Karthikeyan, Marimuthu Dhinesh Kumar, Ganesan Kaniraja e Kalpana Bhargava. "Electrochemical Biosensors for Point of care Applications". Defence Science Journal 70, n.º 5 (8 de outubro de 2020): 549–56. http://dx.doi.org/10.14429/dsj.70.16359.
Texto completo da fonteMcCormick, Wesley, Pádraig McDonagh, John Doran e Denis McCrudden. "Covalent Immobilisation of a Nanoporous Platinum Film onto a Gold Screen-Printed Electrode for Highly Stable and Selective Non-Enzymatic Glucose Sensing". Catalysts 11, n.º 10 (26 de setembro de 2021): 1161. http://dx.doi.org/10.3390/catal11101161.
Texto completo da fonteFapyane, Deby, Yooseok Lee, Chyi Yan Lim, Jou-Hyeon Ahn, Seon-Won Kim e In Seop Chang. "Immobilisation of Flavin-Adenine-Dinucleotide-Dependent Glucose Dehydrogenase α Subunit in Free-Standing Graphitised Carbon Nanofiber Paper Using a Bifunctional Cross-Linker for an Enzymatic Biofuel Cell". ChemElectroChem 1, n.º 11 (4 de junho de 2014): 1844–48. http://dx.doi.org/10.1002/celc.201402035.
Texto completo da fonteHoyle, F. C., e D. V. Murphy. "Seasonal changes in microbial function and diversity associated with stubble retention versus burning". Soil Research 44, n.º 4 (2006): 407. http://dx.doi.org/10.1071/sr05183.
Texto completo da fonteDimcheva, Nina D., e Elena G. Horozova. "Electrochemical enzymatic biosensors based on metal micro-/nanoparticles-modified electrodes: a review". Chemical Papers 69, n.º 1 (1 de janeiro de 2015). http://dx.doi.org/10.1515/chempap-2015-0011.
Texto completo da fonteLabus, Karolina, Aleksandra Drozd e Anna Trusek-Holownia. "Preparation and characterisation of gelatine hydrogels predisposed to use as matrices for effective immobilisation of biocatalysts". Chemical Papers, 5 de janeiro de 2015. http://dx.doi.org/10.1515/chempap-2015-0235.
Texto completo da fonteGutierrez-Nunez, Deborah Valeria, e Paul Kilmartin. "Immobilisation of an Enzymatic System on a Pedot-Modified Electrode to Quantify L-Malic Acid". SSRN Electronic Journal, 2022. http://dx.doi.org/10.2139/ssrn.4187464.
Texto completo da fonteEsteves, C., P. Fareleira, M. A. Castelo-Branco, I. G. Lopes, M. Mota, D. Murta e R. Menino. "Black soldier fly larvae frass increases the soil’s residual nutrient content and enzymatic activity – a lettuce production trial". Journal of Insects as Food and Feed, 31 de maio de 2022, 1–10. http://dx.doi.org/10.3920/jiff2022.0005.
Texto completo da fonteChandola, Jyoti, Vandana Semwal, Narotam Sharma e Pooja Singh. "Isolation, Biochemical Characterization and Production of Immobilised β-Amylase Chitosan Beads Using Bacteria from Waste Water Effluents for its Industrial Production Aspect". Microbiology Research Journal International, 31 de dezembro de 2020, 111–16. http://dx.doi.org/10.9734/mrji/2020/v30i930270.
Texto completo da fonteChandola, Jyoti, Vandana Semwal, Narotam Sharma e Pooja Singh. "Isolation, Biochemical Characterization and Production of Immobilised β-Amylase Chitosan Beads Using Bacteria from Waste Water Effluents for its Industrial Production Aspect". Microbiology Research Journal International, 31 de dezembro de 2020, 111–16. http://dx.doi.org/10.9734/mrji/2020/v30i930270.
Texto completo da fonteXu, Lili, Yimin Qin, Yufeng Song, Aixing Tang e Youyan Liu. "Glutaraldehyde-crosslinked Rhizopus oryzae whole cells show improved catalytic performance in alkene epoxidation". Microbial Cell Factories 22, n.º 1 (22 de fevereiro de 2023). http://dx.doi.org/10.1186/s12934-023-02026-0.
Texto completo da fonte