Siga este link para ver outros tipos de publicações sobre o tema: Expanding turbulent flames.

Artigos de revistas sobre o tema "Expanding turbulent flames"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Expanding turbulent flames".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

Yang, Sheng, Abhishek Saha, Zirui Liu, and Chung K. Law. "Role of Darrieus–Landau instability in propagation of expanding turbulent flames." Journal of Fluid Mechanics 850 (July 10, 2018): 784–802. http://dx.doi.org/10.1017/jfm.2018.426.

Texto completo da fonte
Resumo:
In this paper we study the essential role of Darrieus–Landau (DL), hydrodynamic, cellular flame-front instability in the propagation of expanding turbulent flames. First, we analyse and compare the characteristic time scales of flame wrinkling under the simultaneous actions of DL instability and turbulent eddies, based on which three turbulent flame propagation regimes are identified, namely, instability dominated, instability–turbulence interaction and turbulence dominated regimes. We then perform experiments over an extensive range of conditions, including high pressures, to promote and mani
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Zhao, Haoran, Chunmiao Yuan, Gang Li, and Fuchao Tian. "The Propagation Characteristics of Turbulent Expanding Flames of Methane/Hydrogen Blending Gas." Energies 17, no. 23 (2024): 5997. http://dx.doi.org/10.3390/en17235997.

Texto completo da fonte
Resumo:
In the present study, the effect of hydrogen addition on turbulent flame propagation characteristics is investigated in a fan-stirred combustion chamber. The turbulent burning velocities of methane/hydrogen mixture are determined over a wide range of hydrogen fractions, and four classical unified scaling models (the Zimont model, Gulder model, Schmidt model, and Peters model) are evaluated by the experimental data. The acceleration onset, cellular structure, and acceleration exponent of turbulent expanding flames are determined, and an empirical model of turbulent flame acceleration is propose
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Saha, Abhishek, Swetaprovo Chaudhuri, and Chung K. Law. "Flame surface statistics of constant-pressure turbulent expanding premixed flames." Physics of Fluids 26, no. 4 (2014): 045109. http://dx.doi.org/10.1063/1.4871021.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Ahmed, I., and N. Swaminathan. "Simulation of Spherically Expanding Turbulent Premixed Flames." Combustion Science and Technology 185, no. 10 (2013): 1509–40. http://dx.doi.org/10.1080/00102202.2013.808629.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Fries, Dan, Bradley A. Ochs, Abhishek Saha, Devesh Ranjan, and Suresh Menon. "Flame speed characteristics of turbulent expanding flames in a rectangular channel." Combustion and Flame 199 (January 2019): 1–13. http://dx.doi.org/10.1016/j.combustflame.2018.10.008.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Unni, Vishnu R., Chung K. Law, and Abhishek Saha. "A cellular automata model for expanding turbulent flames." Chaos: An Interdisciplinary Journal of Nonlinear Science 30, no. 11 (2020): 113141. http://dx.doi.org/10.1063/5.0018947.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

LIPATNIKOV, A. N., and J. CHOMIAK. "Transient and Geometrical Effects in Expanding Turbulent Flames." Combustion Science and Technology 154, no. 1 (2000): 75–117. http://dx.doi.org/10.1080/00102200008947273.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Zhao, Haoran, Jinhua Wang, Xiao Cai, Hongchao Dai, Zhijian Bian, and Zuohua Huang. "Flame structure, turbulent burning velocity and its unified scaling for lean syngas/air turbulent expanding flames." International Journal of Hydrogen Energy 46, no. 50 (2021): 25699–711. http://dx.doi.org/10.1016/j.ijhydene.2021.05.090.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Liu, Zirui, Sheng Yang, Chung K. Law, and Abhishek Saha. "Cellular instability in Le < 1 turbulent expanding flames." Proceedings of the Combustion Institute 37, no. 2 (2019): 2611–18. http://dx.doi.org/10.1016/j.proci.2018.07.056.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Mukundakumar, Nithin, and Rob Bastiaans. "DNS Study of Spherically Expanding Premixed Turbulent Ammonia-Hydrogen Flame Kernels, Effect of Equivalence Ratio and Hydrogen Content." Energies 15, no. 13 (2022): 4749. http://dx.doi.org/10.3390/en15134749.

Texto completo da fonte
Resumo:
In this study, 3D premixed turbulent ammonia-hydrogen flames in air were studied using DNS. Mixtures with 75%, 50% and 25% ammonia (by mole fraction in the fuel mixture) and equivalence ratios of 0.8, 1.0 and 1.2 were studied. The studies were conducted in a decaying turbulence field with an initial Karlowitz number of 10. The flame structure and the influence of ammonia and the equivalence ratio were first studied. It was observed that the increase in equivalence ratio smoothened out the small scale wrinkles while leading to strongly curved leading edges. Increasing the amount of hydrogen in
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Li, Hong-meng, Guo-xiu Li, and Guo-peng Zhang. "Self-similar propagation and flame acceleration of hydrogen-rich syngas turbulent expanding flames." Fuel 350 (October 2023): 128813. http://dx.doi.org/10.1016/j.fuel.2023.128813.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Ozel Erol, Gulcan, Josef Hasslberger, Markus Klein, and Nilanjan Chakraborty. "Propagation of Spherically Expanding Turbulent Flames into Fuel Droplet-Mists." Flow, Turbulence and Combustion 103, no. 4 (2019): 913–41. http://dx.doi.org/10.1007/s10494-019-00035-x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Alqallaf, Ahmad, Markus Klein, and Nilanjan Chakraborty. "Effects of Lewis Number on the Evolution of Curvature in Spherically Expanding Turbulent Premixed Flames." Fluids 4, no. 1 (2019): 12. http://dx.doi.org/10.3390/fluids4010012.

Texto completo da fonte
Resumo:
The effects of Lewis number on the physical mechanisms pertinent to the curvature evolution have been investigated using three-dimensional Direct Numerical Simulation (DNS) of spherically expanding turbulent premixed flames with characteristic Lewis number of L e = 0.8 , 1.0 and 1.2. It has been found that the overall burning rate and the extent of flame wrinkling increase with decreasing Lewis number L e , and this tendency is particularly prevalent for the sub-unity Lewis number (e.g., L e = 0.8 ) case due to the occurrence of the thermo-diffusive instability. Accordingly, the L e = 0.8 case
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Zheng, Yutao, Pervez Ahmed, and Simone Hochgreb. "Extracting global reaction rate and turbulent flame speed from reconstructed 3D spherically expanding flames." Combustion and Flame 278 (August 2025): 114247. https://doi.org/10.1016/j.combustflame.2025.114247.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Thévenin, D. "Three-dimensional direct simulations and structure of expanding turbulent methane flames." Proceedings of the Combustion Institute 30, no. 1 (2005): 629–37. http://dx.doi.org/10.1016/j.proci.2004.08.037.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Goulier, J., A. Comandini, F. Halter, and N. Chaumeix. "Experimental study on turbulent expanding flames of lean hydrogen/air mixtures." Proceedings of the Combustion Institute 36, no. 2 (2017): 2823–32. http://dx.doi.org/10.1016/j.proci.2016.06.074.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Cai, Xiao, Shouguo Su, Jinhua Wang, Hongchao Dai, and Zuohua Huang. "Morphology and turbulent burning velocity of n-decane/air expanding flames at constant turbulent Reynolds numbers." Combustion and Flame 261 (March 2024): 113283. http://dx.doi.org/10.1016/j.combustflame.2023.113283.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

van Oijen, J. A., G. R. A. Groot, R. J. M. Bastiaans, and L. P. H. de Goey. "A flamelet analysis of the burning velocity of premixed turbulent expanding flames." Proceedings of the Combustion Institute 30, no. 1 (2005): 657–64. http://dx.doi.org/10.1016/j.proci.2004.08.159.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Zhao, Haoran, Jinhua Wang, Xiao Cai, et al. "On accelerative propagation of premixed hydrogen/air laminar and turbulent expanding flames." Energy 283 (November 2023): 129106. http://dx.doi.org/10.1016/j.energy.2023.129106.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Concetti, Riccardo, Josef Hasslberger, Nilanjan Chakraborty, and Markus Klein. "Effects of Water Mist on the Initial Evolution of Turbulent Premixed Hydrogen/Air Flame Kernels." Energies 17, no. 18 (2024): 4632. http://dx.doi.org/10.3390/en17184632.

Texto completo da fonte
Resumo:
In this study, a series of carrier-phase direct numerical simulations are conducted on spherical expanding premixed hydrogen/air flames with liquid water addition. An Eulerian–Lagrangian approach with two-way coupling is employed to describe the liquid–gas interaction. The impacts of preferential diffusion, the equivalence ratio, water loading, and the initial diameter of the water droplets are examined and analyzed in terms of flame evolution. It is observed that liquid water has the potential to influence flame propagation characteristics by reducing the total burning rate, flame area, and b
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Huang, Linyuan, Chonghua Lai, Sheng Huang, Yang Zuo, and Quan Zhu. "Turbulent flame propagation of C10 hydrocarbons/air expanding flames: Possible unified correlation based on the Markstein number." Combustion and Flame 270 (December 2024): 113724. http://dx.doi.org/10.1016/j.combustflame.2024.113724.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Jiang, L. J., S. S. Shy, W. Y. Li, H. M. Huang, and M. T. Nguyen. "High-temperature, high-pressure burning velocities of expanding turbulent premixed flames and their comparison with Bunsen-type flames." Combustion and Flame 172 (October 2016): 173–82. http://dx.doi.org/10.1016/j.combustflame.2016.07.021.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Brequigny, P., F. Halter, and C. Mounaïm-Rousselle. "Lewis number and Markstein length effects on turbulent expanding flames in a spherical vessel." Experimental Thermal and Fluid Science 73 (May 2016): 33–41. http://dx.doi.org/10.1016/j.expthermflusci.2015.08.021.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Brequigny, Pierre, Charles Endouard, Christine Mounaïm-Rousselle, and Fabrice Foucher. "An experimental study on turbulent premixed expanding flames using simultaneously Schlieren and tomography techniques." Experimental Thermal and Fluid Science 95 (July 2018): 11–17. http://dx.doi.org/10.1016/j.expthermflusci.2017.12.018.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Wang, Shixing, Ayman M. Elbaz, Zhihua Wang, and William L. Roberts. "The effect of oxygen content on the turbulent flame speed of ammonia/oxygen/nitrogen expanding flames under elevated pressures." Combustion and Flame 232 (October 2021): 111521. http://dx.doi.org/10.1016/j.combustflame.2021.111521.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

Jiang, L. J., S. S. Shy, W. Y. Li, H. M. Huang, and M. T. Nguyen. "Corrigendum to “High-temperature, high-pressure burning velocities of expanding turbulent premixed flames and their comparison with Bunsen-type flames” [Combust. Flame 172 (2016) 173–182]." Combustion and Flame 227 (May 2021): 464. http://dx.doi.org/10.1016/j.combustflame.2021.01.029.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Huang, Sheng, Ronghua Huang, Pei Zhou, Yu Zhang, Zhouping Yin, and Zhaowen Wang. "Role of cellular wavelengths in self-acceleration of lean hydrogen-air expanding flames under turbulent conditions." International Journal of Hydrogen Energy 46, no. 17 (2021): 10494–505. http://dx.doi.org/10.1016/j.ijhydene.2020.12.124.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

Zhao, Haoran, Gang Li, Jinhua Wang, and Zuohua Huang. "Experimental study of H2/air turbulent expanding flames over wide equivalence ratios: Effects of molecular transport." Fuel 341 (June 2023): 127652. http://dx.doi.org/10.1016/j.fuel.2023.127652.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Wang, Shixing, Ayman M. Elbaz, Simone Hochgreb, and William L. Roberts. "Local statistics of turbulent spherical expanding flames for NH3/CH4/H2/air measured by 10 kHz PIV." Proceedings of the Combustion Institute 40, no. 1-4 (2024): 105251. http://dx.doi.org/10.1016/j.proci.2024.105251.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Cai, Xiao, Jinhua Wang, Zhijian Bian, Haoran Zhao, Meng Zhang, and Zuohua Huang. "Self-similar propagation and turbulent burning velocity of CH4/H2/air expanding flames: Effect of Lewis number." Combustion and Flame 212 (February 2020): 1–12. http://dx.doi.org/10.1016/j.combustflame.2019.10.019.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Huang, Linyuan, Sheng Huang, Xinke Wang, Xiaomeng Zhao, Hui Li, and Quan Zhu. "Similarity in laminar burning velocity and scaling of turbulent flame speed of real fuel/air expanding flames: RP-3 kerosene with complex compositions." Combustion and Flame 277 (July 2025): 114209. https://doi.org/10.1016/j.combustflame.2025.114209.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Fries, Dan, Bradley A. Ochs, Devesh Ranjan, and Suresh Menon. "Hot-wire and PIV characterisation of a novel small-scale turbulent channel flow facility developed to study premixed expanding flames." Journal of Turbulence 18, no. 11 (2017): 1081–103. http://dx.doi.org/10.1080/14685248.2017.1356466.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Ozel Erol, Gulcan, Josef Hasslberger, Markus Klein, and Nilanjan Chakraborty. "A direct numerical simulation analysis of spherically expanding turbulent flames in fuel droplet-mists for an overall equivalence ratio of unity." Physics of Fluids 30, no. 8 (2018): 086104. http://dx.doi.org/10.1063/1.5045487.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Wu, Fujia, Abhishek Saha, Swetaprovo Chaudhuri, and Chung K. Law. "Propagation speeds of expanding turbulent flames of C4 to C8 n-alkanes at elevated pressures: Experimental determination, fuel similarity, and stretch-affected local extinction." Proceedings of the Combustion Institute 35, no. 2 (2015): 1501–8. http://dx.doi.org/10.1016/j.proci.2014.07.070.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Chaudhuri, Swetaprovo, Abhishek Saha, and Chung K. Law. "On flame–turbulence interaction in constant-pressure expanding flames." Proceedings of the Combustion Institute 35, no. 2 (2015): 1331–39. http://dx.doi.org/10.1016/j.proci.2014.07.038.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

MORVAN, D., B. PORTERIE, M. LARINI, and J. C. LORAUD. "Behaviour of a Methane/Air Turbulent Diffusion Flame Expanding from a Porous Burner." International Journal of Computational Fluid Dynamics 11, no. 3-4 (1999): 313–24. http://dx.doi.org/10.1080/10618569908940883.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

Zhang, Guo-Peng, Guo-Xiu Li, Hong-Meng Li, and Jia-Cheng Lv. "Experimental Study of the Flame Structural Characteristics and Self-Similar Propagation of Syngas and Air Turbulent Expanding Premixed Flame." Journal of Energy Engineering 147, no. 2 (2021): 04020090. http://dx.doi.org/10.1061/(asce)ey.1943-7897.0000742.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

Zhang, Guo-Peng, Guo-Xiu Li, Hong-Meng Li, Yan-Huan Jiang, and Jia-Cheng Lv. "Experimental investigation on the self-acceleration of 10%H2/90%CO/air turbulent expanding premixed flame." International Journal of Hydrogen Energy 44, no. 44 (2019): 24321–30. http://dx.doi.org/10.1016/j.ijhydene.2019.07.154.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Gostintsev, Yu A., V. E. Fortov, and Yu V. Shatskikh. "Self-Similar Propagation Law and Fractal Structure of the Surface of a Free Expanding Turbulent Spherical Flame." Doklady Physical Chemistry 397, no. 1-3 (2004): 141–44. http://dx.doi.org/10.1023/b:dopc.0000035399.90845.db.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Ciccarelli, G. "Explosion propagation in inert porous media." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 370, no. 1960 (2012): 647–67. http://dx.doi.org/10.1098/rsta.2011.0346.

Texto completo da fonte
Resumo:
Porous media are often used in flame arresters because of the high surface area to volume ratio that is required for flame quenching. However, if the flame is not quenched, the flow obstruction within the porous media can promote explosion escalation, which is a well-known phenomenon in obstacle-laden channels. There are many parallels between explosion propagation through porous media and obstacle-laden channels. In both cases, the obstructions play a duel role. On the one hand, the obstruction enhances explosion propagation through an early shear-driven turbulence production mechanism and th
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

Tang, Bofeng, Haihong Che, Gary P. Zank, and Vladimir I. Kolobov. "Suprathermal Electron Transport and Electron Beam Formation in the Solar Corona." Astrophysical Journal 954, no. 1 (2023): 43. http://dx.doi.org/10.3847/1538-4357/ace7be.

Texto completo da fonte
Resumo:
Abstract Electron beams that are commonly observed in the corona were discovered to be associated with solar flares. These “coronal” electron beams are found ≥300 Mm above the acceleration region and have velocities ranging from 0.1c up to 0.6c. However, the mechanism for producing these beams remains unclear. In this paper, we use kinetic transport theory to investigate how isotropic suprathermal energetic electrons escaping from the acceleration region of flares are transported upwardly along the magnetic field lines of flares to develop coronal electron beams. We find that magnetic focusing
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

Helling, Tobias, Florian Reischl, Andreas Rosin, Thorsten Gerdes, and Walter Krenkel. "Atomization of Borosilicate Glass Melts for the Fabrication of Hollow Glass Microspheres." Processes 11, no. 9 (2023): 2559. http://dx.doi.org/10.3390/pr11092559.

Texto completo da fonte
Resumo:
Direct atomization of a free-flowing glass melt was carried out using a high-speed flame with the aim of producing tiny, self-expanding glass melt droplets to form hollow glass microspheres. Atomization experiments were carried out using a specially adapted free-fall atomizer in combination with a high-power gas burner to achieve sufficient temperatures to atomize the melt droplets and to directly expand them into hollow glass spheres. In addition, numerical simulations were carried out to investigate non-measurable parameters such as hot gas velocities and temperatures in the flame region by
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

Shaharin, A. Sulaiman, and Lawes Malcolm. "Burning Rates of Turbulent Gaseous and Aerosol Flames." May 23, 2009. https://doi.org/10.5281/zenodo.1063364.

Texto completo da fonte
Resumo:
Combustion of sprays is of technological importance, but its flame behavior is not fully understood. Furthermore, the multiplicity of dependent variables such as pressure, temperature, equivalence ratio, and droplet sizes complicates the study of spray combustion. Fundamental study on the influence of the presence of liquid droplets has revealed that laminar flames within aerosol mixtures more readily become unstable than for gaseous ones and this increases the practical burning rate. However, fundamental studies on turbulent flames of aerosol mixtures are limited particularly those under near
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

Vinod, Aditya, Tejas Kulkarni, and Fabrizio Bisetti. "Macroscopic View of Reynolds Scaling and Stretch Effects in Spherical Turbulent Premixed Flames." AIAA Journal, August 18, 2023, 1–11. http://dx.doi.org/10.2514/1.j062239.

Texto completo da fonte
Resumo:
The burning rate in a spherically expanding turbulent premixed flame is explored using direct numerical simulations, and a model of ordinary differential equations is proposed. The numerical dataset, from a previous work, is obtained from direct numerical simulations of confined spherical flames in isotropic turbulence over a range of Reynolds numbers. We begin the derivation of the model with an equation for the burning rate for the domain under consideration, and using a thin flame assumption and a two-fluid approach, we find the normalized turbulent burning rate to be controlled by the incr
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

"Observations on the effect of centrifugal fields and the structure of turbulent flames." Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences 431, no. 1883 (1990): 389–401. http://dx.doi.org/10.1098/rspa.1990.0139.

Texto completo da fonte
Resumo:
Following a demonstration that hot gas pockets coalesce in plasma jet vortex cores, various burner systems are designed to induce solid body rotation such as either to promote or to impede the transport into reactants of any islands of hot gases. Promotion results in large increases in the burning velocity and in the stability of premixed turbulent hydrocarbon-air flames, and vice versa. Planar imaging by laser-induced fluorescence of OH at high magnifications reveals numerous small islands of hydroxyl in small turbulent flames, especially near the tips and close to blow-out. Comparison with s
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

Chaudhuri, Swetaprovo, Fujia Wu, Delin Zhu, and Chung K. Law. "Flame Speed and Self-Similar Propagation of Expanding Turbulent Premixed Flames." Physical Review Letters 108, no. 4 (2012). http://dx.doi.org/10.1103/physrevlett.108.044503.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

Kutkan, Halit, Alberto Amato, Giovanni Campa, Giulio Ghirardo, Luis Tay Wo Chong Hilares, and Eirik Æs⊘y. "Modelling of Turbulent Premixed CH4/H2/Air Flames Including the Influence of Stretch and Heat Losses." Journal of Engineering for Gas Turbines and Power, August 3, 2021. http://dx.doi.org/10.1115/1.4051989.

Texto completo da fonte
Resumo:
Abstract This paper presents a RANS turbulent combustion model for CH4/H2/air mixtures which includes the effect of heat losses and flame stretch. This approach extends a previous model concept designed for methane/air mixtures and improves the prediction of flame stabilization when hydrogen is added to the fuel. Heat loss and stretch effects are modelled by tabulating the consumption speed of laminar counter flow flames in a fresh-to burnt configuration with detailed chemistry at various heat loss and flame stretch values. These computed values are then introduced in the turbulent combustion
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

Bechtold, John K., Gautham Krishnan, and Moshe Matalon. "Hydrodynamic theory of premixed flames propagating in closed vessels: flame speed and Markstein lengths." Journal of Fluid Mechanics 998 (November 4, 2024). http://dx.doi.org/10.1017/jfm.2024.919.

Texto completo da fonte
Resumo:
A hydrodynamic theory of premixed flame propagation within closed vessels is developed assuming the flame is much thinner than all other fluid dynamic lengths. In this limit, the flame is confined to a surface separating the unburned mixture from burned combustion products, and propagates at a speed determined from the analysis of its internal structure. Unlike freely propagating flames that propagate under nearly isobaric conditions, combustion in a closed vessel results in continuous increases in pressure, burning rate and flame temperature, and a progressive decrease in flame thickness. The
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

Chaudhuri, Swetaprovo, Fujia Wu, and Chung K. Law. "Scaling of turbulent flame speed for expanding flames with Markstein diffusion considerations." Physical Review E 88, no. 3 (2013). http://dx.doi.org/10.1103/physreve.88.033005.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

Cai, Xiao, Jinhua Wang, Zhijian Bian, Haoran Zhao, Zhongshan Li, and Zuohua Huang. "Propagation of Darrieus–Landau unstable laminar and turbulent expanding flames." Proceedings of the Combustion Institute, September 2020. http://dx.doi.org/10.1016/j.proci.2020.06.247.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!