Artigos de revistas sobre o tema "Expanding turbulent flames"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Expanding turbulent flames".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Yang, Sheng, Abhishek Saha, Zirui Liu, and Chung K. Law. "Role of Darrieus–Landau instability in propagation of expanding turbulent flames." Journal of Fluid Mechanics 850 (July 10, 2018): 784–802. http://dx.doi.org/10.1017/jfm.2018.426.
Texto completo da fonteZhao, Haoran, Chunmiao Yuan, Gang Li, and Fuchao Tian. "The Propagation Characteristics of Turbulent Expanding Flames of Methane/Hydrogen Blending Gas." Energies 17, no. 23 (2024): 5997. http://dx.doi.org/10.3390/en17235997.
Texto completo da fonteSaha, Abhishek, Swetaprovo Chaudhuri, and Chung K. Law. "Flame surface statistics of constant-pressure turbulent expanding premixed flames." Physics of Fluids 26, no. 4 (2014): 045109. http://dx.doi.org/10.1063/1.4871021.
Texto completo da fonteAhmed, I., and N. Swaminathan. "Simulation of Spherically Expanding Turbulent Premixed Flames." Combustion Science and Technology 185, no. 10 (2013): 1509–40. http://dx.doi.org/10.1080/00102202.2013.808629.
Texto completo da fonteFries, Dan, Bradley A. Ochs, Abhishek Saha, Devesh Ranjan, and Suresh Menon. "Flame speed characteristics of turbulent expanding flames in a rectangular channel." Combustion and Flame 199 (January 2019): 1–13. http://dx.doi.org/10.1016/j.combustflame.2018.10.008.
Texto completo da fonteUnni, Vishnu R., Chung K. Law, and Abhishek Saha. "A cellular automata model for expanding turbulent flames." Chaos: An Interdisciplinary Journal of Nonlinear Science 30, no. 11 (2020): 113141. http://dx.doi.org/10.1063/5.0018947.
Texto completo da fonteLIPATNIKOV, A. N., and J. CHOMIAK. "Transient and Geometrical Effects in Expanding Turbulent Flames." Combustion Science and Technology 154, no. 1 (2000): 75–117. http://dx.doi.org/10.1080/00102200008947273.
Texto completo da fonteZhao, Haoran, Jinhua Wang, Xiao Cai, Hongchao Dai, Zhijian Bian, and Zuohua Huang. "Flame structure, turbulent burning velocity and its unified scaling for lean syngas/air turbulent expanding flames." International Journal of Hydrogen Energy 46, no. 50 (2021): 25699–711. http://dx.doi.org/10.1016/j.ijhydene.2021.05.090.
Texto completo da fonteLiu, Zirui, Sheng Yang, Chung K. Law, and Abhishek Saha. "Cellular instability in Le < 1 turbulent expanding flames." Proceedings of the Combustion Institute 37, no. 2 (2019): 2611–18. http://dx.doi.org/10.1016/j.proci.2018.07.056.
Texto completo da fonteMukundakumar, Nithin, and Rob Bastiaans. "DNS Study of Spherically Expanding Premixed Turbulent Ammonia-Hydrogen Flame Kernels, Effect of Equivalence Ratio and Hydrogen Content." Energies 15, no. 13 (2022): 4749. http://dx.doi.org/10.3390/en15134749.
Texto completo da fonteLi, Hong-meng, Guo-xiu Li, and Guo-peng Zhang. "Self-similar propagation and flame acceleration of hydrogen-rich syngas turbulent expanding flames." Fuel 350 (October 2023): 128813. http://dx.doi.org/10.1016/j.fuel.2023.128813.
Texto completo da fonteOzel Erol, Gulcan, Josef Hasslberger, Markus Klein, and Nilanjan Chakraborty. "Propagation of Spherically Expanding Turbulent Flames into Fuel Droplet-Mists." Flow, Turbulence and Combustion 103, no. 4 (2019): 913–41. http://dx.doi.org/10.1007/s10494-019-00035-x.
Texto completo da fonteAlqallaf, Ahmad, Markus Klein, and Nilanjan Chakraborty. "Effects of Lewis Number on the Evolution of Curvature in Spherically Expanding Turbulent Premixed Flames." Fluids 4, no. 1 (2019): 12. http://dx.doi.org/10.3390/fluids4010012.
Texto completo da fonteZheng, Yutao, Pervez Ahmed, and Simone Hochgreb. "Extracting global reaction rate and turbulent flame speed from reconstructed 3D spherically expanding flames." Combustion and Flame 278 (August 2025): 114247. https://doi.org/10.1016/j.combustflame.2025.114247.
Texto completo da fonteThévenin, D. "Three-dimensional direct simulations and structure of expanding turbulent methane flames." Proceedings of the Combustion Institute 30, no. 1 (2005): 629–37. http://dx.doi.org/10.1016/j.proci.2004.08.037.
Texto completo da fonteGoulier, J., A. Comandini, F. Halter, and N. Chaumeix. "Experimental study on turbulent expanding flames of lean hydrogen/air mixtures." Proceedings of the Combustion Institute 36, no. 2 (2017): 2823–32. http://dx.doi.org/10.1016/j.proci.2016.06.074.
Texto completo da fonteCai, Xiao, Shouguo Su, Jinhua Wang, Hongchao Dai, and Zuohua Huang. "Morphology and turbulent burning velocity of n-decane/air expanding flames at constant turbulent Reynolds numbers." Combustion and Flame 261 (March 2024): 113283. http://dx.doi.org/10.1016/j.combustflame.2023.113283.
Texto completo da fontevan Oijen, J. A., G. R. A. Groot, R. J. M. Bastiaans, and L. P. H. de Goey. "A flamelet analysis of the burning velocity of premixed turbulent expanding flames." Proceedings of the Combustion Institute 30, no. 1 (2005): 657–64. http://dx.doi.org/10.1016/j.proci.2004.08.159.
Texto completo da fonteZhao, Haoran, Jinhua Wang, Xiao Cai, et al. "On accelerative propagation of premixed hydrogen/air laminar and turbulent expanding flames." Energy 283 (November 2023): 129106. http://dx.doi.org/10.1016/j.energy.2023.129106.
Texto completo da fonteConcetti, Riccardo, Josef Hasslberger, Nilanjan Chakraborty, and Markus Klein. "Effects of Water Mist on the Initial Evolution of Turbulent Premixed Hydrogen/Air Flame Kernels." Energies 17, no. 18 (2024): 4632. http://dx.doi.org/10.3390/en17184632.
Texto completo da fonteHuang, Linyuan, Chonghua Lai, Sheng Huang, Yang Zuo, and Quan Zhu. "Turbulent flame propagation of C10 hydrocarbons/air expanding flames: Possible unified correlation based on the Markstein number." Combustion and Flame 270 (December 2024): 113724. http://dx.doi.org/10.1016/j.combustflame.2024.113724.
Texto completo da fonteJiang, L. J., S. S. Shy, W. Y. Li, H. M. Huang, and M. T. Nguyen. "High-temperature, high-pressure burning velocities of expanding turbulent premixed flames and their comparison with Bunsen-type flames." Combustion and Flame 172 (October 2016): 173–82. http://dx.doi.org/10.1016/j.combustflame.2016.07.021.
Texto completo da fonteBrequigny, P., F. Halter, and C. Mounaïm-Rousselle. "Lewis number and Markstein length effects on turbulent expanding flames in a spherical vessel." Experimental Thermal and Fluid Science 73 (May 2016): 33–41. http://dx.doi.org/10.1016/j.expthermflusci.2015.08.021.
Texto completo da fonteBrequigny, Pierre, Charles Endouard, Christine Mounaïm-Rousselle, and Fabrice Foucher. "An experimental study on turbulent premixed expanding flames using simultaneously Schlieren and tomography techniques." Experimental Thermal and Fluid Science 95 (July 2018): 11–17. http://dx.doi.org/10.1016/j.expthermflusci.2017.12.018.
Texto completo da fonteWang, Shixing, Ayman M. Elbaz, Zhihua Wang, and William L. Roberts. "The effect of oxygen content on the turbulent flame speed of ammonia/oxygen/nitrogen expanding flames under elevated pressures." Combustion and Flame 232 (October 2021): 111521. http://dx.doi.org/10.1016/j.combustflame.2021.111521.
Texto completo da fonteJiang, L. J., S. S. Shy, W. Y. Li, H. M. Huang, and M. T. Nguyen. "Corrigendum to “High-temperature, high-pressure burning velocities of expanding turbulent premixed flames and their comparison with Bunsen-type flames” [Combust. Flame 172 (2016) 173–182]." Combustion and Flame 227 (May 2021): 464. http://dx.doi.org/10.1016/j.combustflame.2021.01.029.
Texto completo da fonteHuang, Sheng, Ronghua Huang, Pei Zhou, Yu Zhang, Zhouping Yin, and Zhaowen Wang. "Role of cellular wavelengths in self-acceleration of lean hydrogen-air expanding flames under turbulent conditions." International Journal of Hydrogen Energy 46, no. 17 (2021): 10494–505. http://dx.doi.org/10.1016/j.ijhydene.2020.12.124.
Texto completo da fonteZhao, Haoran, Gang Li, Jinhua Wang, and Zuohua Huang. "Experimental study of H2/air turbulent expanding flames over wide equivalence ratios: Effects of molecular transport." Fuel 341 (June 2023): 127652. http://dx.doi.org/10.1016/j.fuel.2023.127652.
Texto completo da fonteWang, Shixing, Ayman M. Elbaz, Simone Hochgreb, and William L. Roberts. "Local statistics of turbulent spherical expanding flames for NH3/CH4/H2/air measured by 10 kHz PIV." Proceedings of the Combustion Institute 40, no. 1-4 (2024): 105251. http://dx.doi.org/10.1016/j.proci.2024.105251.
Texto completo da fonteCai, Xiao, Jinhua Wang, Zhijian Bian, Haoran Zhao, Meng Zhang, and Zuohua Huang. "Self-similar propagation and turbulent burning velocity of CH4/H2/air expanding flames: Effect of Lewis number." Combustion and Flame 212 (February 2020): 1–12. http://dx.doi.org/10.1016/j.combustflame.2019.10.019.
Texto completo da fonteHuang, Linyuan, Sheng Huang, Xinke Wang, Xiaomeng Zhao, Hui Li, and Quan Zhu. "Similarity in laminar burning velocity and scaling of turbulent flame speed of real fuel/air expanding flames: RP-3 kerosene with complex compositions." Combustion and Flame 277 (July 2025): 114209. https://doi.org/10.1016/j.combustflame.2025.114209.
Texto completo da fonteFries, Dan, Bradley A. Ochs, Devesh Ranjan, and Suresh Menon. "Hot-wire and PIV characterisation of a novel small-scale turbulent channel flow facility developed to study premixed expanding flames." Journal of Turbulence 18, no. 11 (2017): 1081–103. http://dx.doi.org/10.1080/14685248.2017.1356466.
Texto completo da fonteOzel Erol, Gulcan, Josef Hasslberger, Markus Klein, and Nilanjan Chakraborty. "A direct numerical simulation analysis of spherically expanding turbulent flames in fuel droplet-mists for an overall equivalence ratio of unity." Physics of Fluids 30, no. 8 (2018): 086104. http://dx.doi.org/10.1063/1.5045487.
Texto completo da fonteWu, Fujia, Abhishek Saha, Swetaprovo Chaudhuri, and Chung K. Law. "Propagation speeds of expanding turbulent flames of C4 to C8 n-alkanes at elevated pressures: Experimental determination, fuel similarity, and stretch-affected local extinction." Proceedings of the Combustion Institute 35, no. 2 (2015): 1501–8. http://dx.doi.org/10.1016/j.proci.2014.07.070.
Texto completo da fonteChaudhuri, Swetaprovo, Abhishek Saha, and Chung K. Law. "On flame–turbulence interaction in constant-pressure expanding flames." Proceedings of the Combustion Institute 35, no. 2 (2015): 1331–39. http://dx.doi.org/10.1016/j.proci.2014.07.038.
Texto completo da fonteMORVAN, D., B. PORTERIE, M. LARINI, and J. C. LORAUD. "Behaviour of a Methane/Air Turbulent Diffusion Flame Expanding from a Porous Burner." International Journal of Computational Fluid Dynamics 11, no. 3-4 (1999): 313–24. http://dx.doi.org/10.1080/10618569908940883.
Texto completo da fonteZhang, Guo-Peng, Guo-Xiu Li, Hong-Meng Li, and Jia-Cheng Lv. "Experimental Study of the Flame Structural Characteristics and Self-Similar Propagation of Syngas and Air Turbulent Expanding Premixed Flame." Journal of Energy Engineering 147, no. 2 (2021): 04020090. http://dx.doi.org/10.1061/(asce)ey.1943-7897.0000742.
Texto completo da fonteZhang, Guo-Peng, Guo-Xiu Li, Hong-Meng Li, Yan-Huan Jiang, and Jia-Cheng Lv. "Experimental investigation on the self-acceleration of 10%H2/90%CO/air turbulent expanding premixed flame." International Journal of Hydrogen Energy 44, no. 44 (2019): 24321–30. http://dx.doi.org/10.1016/j.ijhydene.2019.07.154.
Texto completo da fonteGostintsev, Yu A., V. E. Fortov, and Yu V. Shatskikh. "Self-Similar Propagation Law and Fractal Structure of the Surface of a Free Expanding Turbulent Spherical Flame." Doklady Physical Chemistry 397, no. 1-3 (2004): 141–44. http://dx.doi.org/10.1023/b:dopc.0000035399.90845.db.
Texto completo da fonteCiccarelli, G. "Explosion propagation in inert porous media." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 370, no. 1960 (2012): 647–67. http://dx.doi.org/10.1098/rsta.2011.0346.
Texto completo da fonteTang, Bofeng, Haihong Che, Gary P. Zank, and Vladimir I. Kolobov. "Suprathermal Electron Transport and Electron Beam Formation in the Solar Corona." Astrophysical Journal 954, no. 1 (2023): 43. http://dx.doi.org/10.3847/1538-4357/ace7be.
Texto completo da fonteHelling, Tobias, Florian Reischl, Andreas Rosin, Thorsten Gerdes, and Walter Krenkel. "Atomization of Borosilicate Glass Melts for the Fabrication of Hollow Glass Microspheres." Processes 11, no. 9 (2023): 2559. http://dx.doi.org/10.3390/pr11092559.
Texto completo da fonteShaharin, A. Sulaiman, and Lawes Malcolm. "Burning Rates of Turbulent Gaseous and Aerosol Flames." May 23, 2009. https://doi.org/10.5281/zenodo.1063364.
Texto completo da fonteVinod, Aditya, Tejas Kulkarni, and Fabrizio Bisetti. "Macroscopic View of Reynolds Scaling and Stretch Effects in Spherical Turbulent Premixed Flames." AIAA Journal, August 18, 2023, 1–11. http://dx.doi.org/10.2514/1.j062239.
Texto completo da fonte"Observations on the effect of centrifugal fields and the structure of turbulent flames." Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences 431, no. 1883 (1990): 389–401. http://dx.doi.org/10.1098/rspa.1990.0139.
Texto completo da fonteChaudhuri, Swetaprovo, Fujia Wu, Delin Zhu, and Chung K. Law. "Flame Speed and Self-Similar Propagation of Expanding Turbulent Premixed Flames." Physical Review Letters 108, no. 4 (2012). http://dx.doi.org/10.1103/physrevlett.108.044503.
Texto completo da fonteKutkan, Halit, Alberto Amato, Giovanni Campa, Giulio Ghirardo, Luis Tay Wo Chong Hilares, and Eirik Æs⊘y. "Modelling of Turbulent Premixed CH4/H2/Air Flames Including the Influence of Stretch and Heat Losses." Journal of Engineering for Gas Turbines and Power, August 3, 2021. http://dx.doi.org/10.1115/1.4051989.
Texto completo da fonteBechtold, John K., Gautham Krishnan, and Moshe Matalon. "Hydrodynamic theory of premixed flames propagating in closed vessels: flame speed and Markstein lengths." Journal of Fluid Mechanics 998 (November 4, 2024). http://dx.doi.org/10.1017/jfm.2024.919.
Texto completo da fonteChaudhuri, Swetaprovo, Fujia Wu, and Chung K. Law. "Scaling of turbulent flame speed for expanding flames with Markstein diffusion considerations." Physical Review E 88, no. 3 (2013). http://dx.doi.org/10.1103/physreve.88.033005.
Texto completo da fonteCai, Xiao, Jinhua Wang, Zhijian Bian, Haoran Zhao, Zhongshan Li, and Zuohua Huang. "Propagation of Darrieus–Landau unstable laminar and turbulent expanding flames." Proceedings of the Combustion Institute, September 2020. http://dx.doi.org/10.1016/j.proci.2020.06.247.
Texto completo da fonte