Literatura científica selecionada sobre o tema "Explainability of machine learning models"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Explainability of machine learning models".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Explainability of machine learning models"
S, Akshay, and Manu Madhavan. "COMPARISON OF EXPLAINABILITY OF MACHINE LEARNING BASED MALAYALAM TEXT CLASSIFICATION." ICTACT Journal on Soft Computing 15, no. 1 (2024): 3386–91. http://dx.doi.org/10.21917/ijsc.2024.0476.
Texto completo da fontePark, Min Sue, Hwijae Son, Chongseok Hyun, and Hyung Ju Hwang. "Explainability of Machine Learning Models for Bankruptcy Prediction." IEEE Access 9 (2021): 124887–99. http://dx.doi.org/10.1109/access.2021.3110270.
Texto completo da fonteCheng, Xueyi, and Chang Che. "Interpretable Machine Learning: Explainability in Algorithm Design." Journal of Industrial Engineering and Applied Science 2, no. 6 (2024): 65–70. https://doi.org/10.70393/6a69656173.323337.
Texto completo da fonteBozorgpanah, Aso, Vicenç Torra, and Laya Aliahmadipour. "Privacy and Explainability: The Effects of Data Protection on Shapley Values." Technologies 10, no. 6 (2022): 125. http://dx.doi.org/10.3390/technologies10060125.
Texto completo da fonteZhang, Xueting. "Traffic Flow Prediction Based on Explainable Machine Learning." Highlights in Science, Engineering and Technology 56 (July 14, 2023): 56–64. http://dx.doi.org/10.54097/hset.v56i.9816.
Texto completo da fontePendyala, Vishnu, and Hyungkyun Kim. "Assessing the Reliability of Machine Learning Models Applied to the Mental Health Domain Using Explainable AI." Electronics 13, no. 6 (2024): 1025. http://dx.doi.org/10.3390/electronics13061025.
Texto completo da fonteKim, Dong-sup, and Seungwoo Shin. "THE ECONOMIC EXPLAINABILITY OF MACHINE LEARNING AND STANDARD ECONOMETRIC MODELS-AN APPLICATION TO THE U.S. MORTGAGE DEFAULT RISK." International Journal of Strategic Property Management 25, no. 5 (2021): 396–412. http://dx.doi.org/10.3846/ijspm.2021.15129.
Texto completo da fonteTOPCU, Deniz. "How to explain a machine learning model: HbA1c classification example." Journal of Medicine and Palliative Care 4, no. 2 (2023): 117–25. http://dx.doi.org/10.47582/jompac.1259507.
Texto completo da fonteRodríguez Mallma, Mirko Jerber, Luis Zuloaga-Rotta, Rubén Borja-Rosales, et al. "Explainable Machine Learning Models for Brain Diseases: Insights from a Systematic Review." Neurology International 16, no. 6 (2024): 1285–307. http://dx.doi.org/10.3390/neurolint16060098.
Texto completo da fonteBhagyashree D Shendkar. "Explainable Machine Learning Models for Real-Time Threat Detection in Cybersecurity." Panamerican Mathematical Journal 35, no. 1s (2024): 264–75. http://dx.doi.org/10.52783/pmj.v35.i1s.2313.
Texto completo da fonteTeses / dissertações sobre o assunto "Explainability of machine learning models"
Delaunay, Julien. "Explainability for machine learning models : from data adaptability to user perception." Electronic Thesis or Diss., Université de Rennes (2023-....), 2023. http://www.theses.fr/2023URENS076.
Texto completo da fonteStanzione, Vincenzo Maria. "Developing a new approach for machine learning explainability combining local and global model-agnostic approaches." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2022. http://amslaurea.unibo.it/25480/.
Texto completo da fonteAyad, Célia. "Towards Reliable Post Hoc Explanations for Machine Learning on Tabular Data and their Applications." Electronic Thesis or Diss., Institut polytechnique de Paris, 2024. http://www.theses.fr/2024IPPAX082.
Texto completo da fonteRadulovic, Nedeljko. "Post-hoc Explainable AI for Black Box Models on Tabular Data." Electronic Thesis or Diss., Institut polytechnique de Paris, 2023. http://www.theses.fr/2023IPPAT028.
Texto completo da fonteWillot, Hénoïk. "Certified explanations of robust models." Electronic Thesis or Diss., Compiègne, 2024. http://www.theses.fr/2024COMP2812.
Texto completo da fonteKurasinski, Lukas. "Machine Learning explainability in text classification for Fake News detection." Thesis, Malmö universitet, Fakulteten för teknik och samhälle (TS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:mau:diva-20058.
Texto completo da fonteLounici, Sofiane. "Watermarking machine learning models." Electronic Thesis or Diss., Sorbonne université, 2022. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2022SORUS282.pdf.
Texto completo da fonteMaltbie, Nicholas. "Integrating Explainability in Deep Learning Application Development: A Categorization and Case Study." University of Cincinnati / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1623169431719474.
Texto completo da fonteHardoon, David Roi. "Semantic models for machine learning." Thesis, University of Southampton, 2006. https://eprints.soton.ac.uk/262019/.
Texto completo da fonteBODINI, MATTEO. "DESIGN AND EXPLAINABILITY OF MACHINE LEARNING ALGORITHMS FOR THE CLASSIFICATION OF CARDIAC ABNORMALITIES FROM ELECTROCARDIOGRAM SIGNALS." Doctoral thesis, Università degli Studi di Milano, 2022. http://hdl.handle.net/2434/888002.
Texto completo da fonteLivros sobre o assunto "Explainability of machine learning models"
Nandi, Anirban, and Aditya Kumar Pal. Interpreting Machine Learning Models. Apress, 2022. http://dx.doi.org/10.1007/978-1-4842-7802-4.
Texto completo da fonteBolc, Leonard. Computational Models of Learning. Springer Berlin Heidelberg, 1987.
Encontre o texto completo da fonteGalindez Olascoaga, Laura Isabel, Wannes Meert, and Marian Verhelst. Hardware-Aware Probabilistic Machine Learning Models. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-74042-9.
Texto completo da fonteSingh, Pramod. Deploy Machine Learning Models to Production. Apress, 2021. http://dx.doi.org/10.1007/978-1-4842-6546-8.
Texto completo da fonteZhang, Zhihua. Statistical Machine Learning: Foundations, Methodologies and Models. John Wiley & Sons, Limited, 2017.
Encontre o texto completo da fonteRendell, Larry. Representations and models for concept learning. Dept. of Computer Science, University of Illinois at Urbana-Champaign, 1987.
Encontre o texto completo da fonteEhteram, Mohammad, Zohreh Sheikh Khozani, Saeed Soltani-Mohammadi, and Maliheh Abbaszadeh. Estimating Ore Grade Using Evolutionary Machine Learning Models. Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-8106-7.
Texto completo da fonteBisong, Ekaba. Building Machine Learning and Deep Learning Models on Google Cloud Platform. Apress, 2019. http://dx.doi.org/10.1007/978-1-4842-4470-8.
Texto completo da fonteGupta, Punit, Mayank Kumar Goyal, Sudeshna Chakraborty, and Ahmed A. Elngar. Machine Learning and Optimization Models for Optimization in Cloud. Chapman and Hall/CRC, 2022. http://dx.doi.org/10.1201/9781003185376.
Texto completo da fonteSuthaharan, Shan. Machine Learning Models and Algorithms for Big Data Classification. Springer US, 2016. http://dx.doi.org/10.1007/978-1-4899-7641-3.
Texto completo da fonteCapítulos de livros sobre o assunto "Explainability of machine learning models"
Nandi, Anirban, and Aditya Kumar Pal. "The Eight Pitfalls of Explainability Methods." In Interpreting Machine Learning Models. Apress, 2022. http://dx.doi.org/10.1007/978-1-4842-7802-4_15.
Texto completo da fonteNandi, Anirban, and Aditya Kumar Pal. "Explainability Facts: A Framework for Systematic Assessment of Explainable Approaches." In Interpreting Machine Learning Models. Apress, 2022. http://dx.doi.org/10.1007/978-1-4842-7802-4_6.
Texto completo da fonteKamath, Uday, and John Liu. "Pre-model Interpretability and Explainability." In Explainable Artificial Intelligence: An Introduction to Interpretable Machine Learning. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-83356-5_2.
Texto completo da fonteDessain, Jean, Nora Bentaleb, and Fabien Vinas. "Cost of Explainability in AI: An Example with Credit Scoring Models." In Communications in Computer and Information Science. Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-44064-9_26.
Texto completo da fonteHenriques, J., T. Rocha, P. de Carvalho, C. Silva, and S. Paredes. "Interpretability and Explainability of Machine Learning Models: Achievements and Challenges." In IFMBE Proceedings. Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-59216-4_9.
Texto completo da fonteBargal, Sarah Adel, Andrea Zunino, Vitali Petsiuk, et al. "Beyond the Visual Analysis of Deep Model Saliency." In xxAI - Beyond Explainable AI. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-04083-2_13.
Texto completo da fonteStevens, Alexander, Johannes De Smedt, and Jari Peeperkorn. "Quantifying Explainability in Outcome-Oriented Predictive Process Monitoring." In Lecture Notes in Business Information Processing. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-98581-3_15.
Texto completo da fonteBaniecki, Hubert, Wojciech Kretowicz, and Przemyslaw Biecek. "Fooling Partial Dependence via Data Poisoning." In Machine Learning and Knowledge Discovery in Databases. Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-26409-2_8.
Texto completo da fonteColosimo, Bianca Maria, and Fabio Centofanti. "Model Interpretability, Explainability and Trust for Manufacturing 4.0." In Interpretability for Industry 4.0 : Statistical and Machine Learning Approaches. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-12402-0_2.
Texto completo da fonteSantos, Geanderson, Amanda Santana, Gustavo Vale, and Eduardo Figueiredo. "Yet Another Model! A Study on Model’s Similarities for Defect and Code Smells." In Fundamental Approaches to Software Engineering. Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-30826-0_16.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Explainability of machine learning models"
Bouzid, Mohamed, and Manar Amayri. "Addressing Explainability in Load Forecasting Using Time Series Machine Learning Models." In 2024 IEEE 12th International Conference on Smart Energy Grid Engineering (SEGE). IEEE, 2024. http://dx.doi.org/10.1109/sege62220.2024.10739606.
Texto completo da fonteBurgos, David, Ahsan Morshed, MD Mamunur Rashid, and Satria Mandala. "A Comparison of Machine Learning Models to Deep Learning Models for Cancer Image Classification and Explainability of Classification." In 2024 International Conference on Data Science and Its Applications (ICoDSA). IEEE, 2024. http://dx.doi.org/10.1109/icodsa62899.2024.10651790.
Texto completo da fonteSheikhani, Arman, Ervin Agic, Mahshid Helali Moghadam, Juan Carlos Andresen, and Anders Vesterberg. "Lithium-Ion Battery SOH Forecasting: From Deep Learning Augmented by Explainability to Lightweight Machine Learning Models." In 2024 IEEE 29th International Conference on Emerging Technologies and Factory Automation (ETFA). IEEE, 2024. http://dx.doi.org/10.1109/etfa61755.2024.10710794.
Texto completo da fonteMechouche, Ammar, Valerio Camerini, Caroline Del, Elsa Cansell, and Konstanca Nikolajevic. "From Dampers Estimated Loads to In-Service Degradation Correlations." In Vertical Flight Society 80th Annual Forum & Technology Display. The Vertical Flight Society, 2024. http://dx.doi.org/10.4050/f-0080-2024-1108.
Texto completo da fonteIzza, Yacine, Xuanxiang Huang, Antonio Morgado, Jordi Planes, Alexey Ignatiev, and Joao Marques-Silva. "Distance-Restricted Explanations: Theoretical Underpinnings & Efficient Implementation." In 21st International Conference on Principles of Knowledge Representation and Reasoning {KR-2023}. International Joint Conferences on Artificial Intelligence Organization, 2024. http://dx.doi.org/10.24963/kr.2024/45.
Texto completo da fonteAlami, Amine, Jaouad Boumhidi, and Loqman Chakir. "Explainability in CNN based Deep Learning models for medical image classification." In 2024 International Conference on Intelligent Systems and Computer Vision (ISCV). IEEE, 2024. http://dx.doi.org/10.1109/iscv60512.2024.10620149.
Texto completo da fonteRodríguez-Barroso, Nuria, Javier Del Ser, M. Victoria Luzón, and Francisco Herrera. "Defense Strategy against Byzantine Attacks in Federated Machine Learning: Developments towards Explainability." In 2024 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). IEEE, 2024. http://dx.doi.org/10.1109/fuzz-ieee60900.2024.10611769.
Texto completo da fontePerikos, Isidoros. "Sensitive Content Detection in Social Networks Using Deep Learning Models and Explainability Techniques." In 2024 IEEE/ACIS 9th International Conference on Big Data, Cloud Computing, and Data Science (BCD). IEEE, 2024. http://dx.doi.org/10.1109/bcd61269.2024.10743081.
Texto completo da fonteGafur, Jamil, Steve Goddard, and William Lai. "Adversarial Robustness and Explainability of Machine Learning Models." In PEARC '24: Practice and Experience in Advanced Research Computing. ACM, 2024. http://dx.doi.org/10.1145/3626203.3670522.
Texto completo da fonteIslam, Md Ariful, Kowshik Nittala, and Garima Bajwa. "Adding Explainability to Machine Learning Models to Detect Chronic Kidney Disease." In 2022 IEEE 23rd International Conference on Information Reuse and Integration for Data Science (IRI). IEEE, 2022. http://dx.doi.org/10.1109/iri54793.2022.00069.
Texto completo da fonteRelatórios de organizações sobre o assunto "Explainability of machine learning models"
Smith, Michael, Erin Acquesta, Arlo Ames, et al. SAGE Intrusion Detection System: Sensitivity Analysis Guided Explainability for Machine Learning. Office of Scientific and Technical Information (OSTI), 2021. http://dx.doi.org/10.2172/1820253.
Texto completo da fonteSkryzalin, Jacek, Kenneth Goss, and Benjamin Jackson. Securing machine learning models. Office of Scientific and Technical Information (OSTI), 2020. http://dx.doi.org/10.2172/1661020.
Texto completo da fonteMartinez, Carianne, Jessica Jones, Drew Levin, Nathaniel Trask, and Patrick Finley. Physics-Informed Machine Learning for Epidemiological Models. Office of Scientific and Technical Information (OSTI), 2020. http://dx.doi.org/10.2172/1706217.
Texto completo da fonteLavender, Samantha, and Trent Tinker, eds. Testbed-19: Machine Learning Models Engineering Report. Open Geospatial Consortium, Inc., 2024. http://dx.doi.org/10.62973/23-033.
Texto completo da fonteSaenz, Juan Antonio, Ismael Djibrilla Boureima, Vitaliy Gyrya, and Susan Kurien. Machine-Learning for Rapid Optimization of Turbulence Models. Office of Scientific and Technical Information (OSTI), 2020. http://dx.doi.org/10.2172/1638623.
Texto completo da fonteKulkarni, Sanjeev R. Extending and Unifying Formal Models for Machine Learning. Defense Technical Information Center, 1997. http://dx.doi.org/10.21236/ada328730.
Texto completo da fonteBanerjee, Boudhayan. Machine Learning Models for Political Video Advertisement Classification. Iowa State University, 2017. http://dx.doi.org/10.31274/cc-20240624-976.
Texto completo da fonteValaitis, Vytautas, and Alessandro T. Villa. A Machine Learning Projection Method for Macro-Finance Models. Federal Reserve Bank of Chicago, 2022. http://dx.doi.org/10.21033/wp-2022-19.
Texto completo da fonteFessel, Kimberly. Machine Learning in Python. Instats Inc., 2024. http://dx.doi.org/10.61700/s74zy0ivgwioe1764.
Texto completo da fonteOgunbire, Abimbola, Panick Kalambay, Hardik Gajera, and Srinivas Pulugurtha. Deep Learning, Machine Learning, or Statistical Models for Weather-related Crash Severity Prediction. Mineta Transportation Institute, 2023. http://dx.doi.org/10.31979/mti.2023.2320.
Texto completo da fonte