Literatura científica selecionada sobre o tema "FLASH CHAMBER"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "FLASH CHAMBER".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "FLASH CHAMBER"
Bock, Peter, Joachim Heintze, Thomas Kunst, Bernhard Schmidt e Ludek Smolìk. "Drift chamber readout with flash ADCs". Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 242, n.º 2 (janeiro de 1986): 237–46. http://dx.doi.org/10.1016/0168-9002(86)90215-9.
Texto completo da fonteSiddique, Sarkar, Harry E. Ruda e James C. L. Chow. "FLASH Radiotherapy and the Use of Radiation Dosimeters". Cancers 15, n.º 15 (30 de julho de 2023): 3883. http://dx.doi.org/10.3390/cancers15153883.
Texto completo da fonteKhamis Mansour, M., e Hassan E. S. Fath. "Comparative study for different demister locations in multistage flash (MSF) flash chamber (FC)". Desalination and Water Treatment 51, n.º 40-42 (dezembro de 2013): 7379–93. http://dx.doi.org/10.1080/19443994.2013.779940.
Texto completo da fonteWu, Haoyu, Weimin Liu, Xiaoming Li, Fengyun Chen e Longbin Yang. "Simulation analysis on flashing process in flash chamber". IOP Conference Series: Earth and Environmental Science 300 (9 de agosto de 2019): 052022. http://dx.doi.org/10.1088/1755-1315/300/5/052022.
Texto completo da fonteLv, Henghua, Yan Wang, Lianying Wu e Yangdong Hu. "Numerical simulation and optimization of the flash chamber for multi-stage flash seawater desalination". Desalination 465 (setembro de 2019): 69–78. http://dx.doi.org/10.1016/j.desal.2019.04.032.
Texto completo da fonteWu, Jian, Jiakun Du, Hong Chen, Yuhuai Li, Wenfeng Zhan, Guangquan Wu e Lin Ye. "Experimental study on flash-boiling spray structure of multi-hole gasoline direct injection injector in a constant volume chamber". International Journal of Spray and Combustion Dynamics 12 (janeiro de 2020): 175682772093243. http://dx.doi.org/10.1177/1756827720932431.
Texto completo da fonteKhamis Mansour, M., e Hassan E. S. Fath. "Numerical simulation of flashing process in MSF flash chamber". Desalination and Water Treatment 51, n.º 10-12 (fevereiro de 2013): 2231–43. http://dx.doi.org/10.1080/19443994.2012.734729.
Texto completo da fonteMalik, A. U., M. Mobin, I. N. Andijani, S. Al-Fozan e A. Al-Hamed. "Investigations on the corrosion of flash chamber floor plates in a multistage flash desalination plant". Journal of Failure Analysis and Prevention 6, n.º 6 (dezembro de 2006): 19–24. http://dx.doi.org/10.1361/154770206x156222.
Texto completo da fonteZhao, Zirui, Xinyu Zhang, Mengjun Gong, Mengrong Chen e Yong Ren. "Numerical Simulation of Cavitation and FlashBoiling in GDI Nozzle and Spray". Journal of Physics: Conference Series 2454, n.º 1 (1 de março de 2023): 012011. http://dx.doi.org/10.1088/1742-6596/2454/1/012011.
Texto completo da fonteTang, Yan Fei, Chao Ding, Ya Ping He, De Chuang Zhou e Jian Wang. "Studies on the Effect of Altitude on the Flammable Liquids' Flash Point". Advanced Materials Research 908 (março de 2014): 345–48. http://dx.doi.org/10.4028/www.scientific.net/amr.908.345.
Texto completo da fonteTeses / dissertações sobre o assunto "FLASH CHAMBER"
Chardin, Gabriel. "Recherche de muons souterrains en provenance de la direction de Cygnus X-3 dans le détecteur de Fréjus : Cygnus X-3 à haute énergie : être ou ne pas être". Paris 11, 1987. http://www.theses.fr/1987PA112015.
Texto completo da fonteSANGADE, NIKHIL VASANT. "PERFORMANCE EVALUATION OF MULTI EVAPORATOR VAPOUR COMPRESSION REFRIGERATION SYSTEM WITH LIQUID-VAPOUR HEAT EXCHANGER AND FLASH CHAMBER USING ALTERNATIVE PURE REFRIGERANTS". Thesis, 2016. http://dspace.dtu.ac.in:8080/jspui/handle/repository/15374.
Texto completo da fonteLivros sobre o assunto "FLASH CHAMBER"
Anderson, Evelyn. Flesh Palace: Chamber of the Tourture Prince. Independently Published, 2019.
Encontre o texto completo da fonteDavis, F. A. Pkg: Flash Cards for Diff Inst and Diff Surg Inst 2e and Surg Equip and Supplies 2e and Goldman Pkt Gde to or 3e and Chambers Surg Tech Rev. Davis Company, F. A., 2016.
Encontre o texto completo da fonteDavis, F. A. Pkg: Flash Cards for Diff Inst and Diff Surg Inst 2e and Surg Equip and Supplies 2e and Goldman Pkt Gde to or 3e and Chambers Surg Tech Rev and Tabers 22e. Davis Company, F. A., 2016.
Encontre o texto completo da fonteRutherford, Colleen J., e F. A. Davis Company Staff. Pkg: Flash Cards for Diff Inst and Diff Surg Inst 2e and Diff Surg Equip and Supplies and Goldman Pkt Gde to or 3e and Chambers Surg Tech Rev and Tabers 22e. Davis Company, F. A., 2013.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "FLASH CHAMBER"
Gärtner, Jan Wilhelm, Daniel D. Loureiro e Andreas Kronenburg. "Modelling and Simulation of Flash Evaporation of Cryogenic Liquids". In Fluid Mechanics and Its Applications, 233–50. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-09008-0_12.
Texto completo da fonteRees, Andreas, e Michael Oschwald. "Experimental Investigation of Transient Injection Phenomena in Rocket Combusters at Vacuum with Cryogenic Flash Boiling". In Fluid Mechanics and Its Applications, 211–31. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-09008-0_11.
Texto completo da fonteAnaya-Reyes, Orlando, David A. Rodriguez-Alejandro, Alejandro Zaleta-Aguilar e Sergio Cano-Andrade. "Exergetic Analysis of a Double Flash Geothermal Plant Integrated with a Central Solar Receiver". In Proceedings of the XV Ibero-American Congress of Mechanical Engineering, 244–50. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-38563-6_36.
Texto completo da fonteSchwartz, C., M. Comet, F. Schnell e D. Spitzer. "The Properties of Detonating Compositions Prepared from Submicron KClO4 and TiH2". In Future Developments in Explosives and Energetics, 158–63. Royal Society of Chemistry, 2023. http://dx.doi.org/10.1039/9781839162350-00158.
Texto completo da fonteSchwartz, C., M. Comet, F. Schnell e D. Spitzer. "The Properties of Detonating Compositions Prepared from Submicron KClO4 and TiH2". In Future Developments in Explosives and Energetics, 158–63. Royal Society of Chemistry, 2023. http://dx.doi.org/10.1039/9781788017855-00158.
Texto completo da fonteAvery, William H., e Chih Wu. "Open-Cycle OTEC". In Renewable Energy from the Ocean. Oxford University Press, 1994. http://dx.doi.org/10.1093/oso/9780195071993.003.0012.
Texto completo da fonteTrollope, Anthony. "Guilty, or Not Guilty". In Orley Farm. Oxford University Press, 2018. http://dx.doi.org/10.1093/owc/9780198803744.003.0014.
Texto completo da fonteMantravadi, Anand. "New Surgical Techniques". In Glaucoma. Oxford University Press, 2012. http://dx.doi.org/10.1093/oso/9780199757084.003.0019.
Texto completo da fonte"coating layer itself, an d at the interface between the coating and the substrate, causes instant fracturing and separation of coating material from the surface. In general, if a coating or contaminant is CHEMICALLY bonded to a surface, dry ice particle blasting will NOT effectively remove the coating. If the bond is PHYSICAL o r MECHANICAL in nature, such as a coating of rubber residue which is "anchored" into the porous surface of an aluminum casting, then there is a good chance that dr y ice blasting will work. Contaminants which are etched, or stained into the surfaces of metals, ceramics, plastics, or other materials typically cannot be removed with dry ice blasting. If the surface of the substrate is extremely porous or rough, providing strong mechanical "anchoring" for the contaminant or coating, dr y ice blasting may not be able to remove all of the coating, or the rate of removal may be too slow to allow dry ice blasting to be cost effective. The classic example of a contaminant that does NOT respond to dry ice blast-ing is RUST. Rust is both chemically and strongly mechanically bonded to steel substrate. Advanced stages of rust must be "chiseled" away with abrasive sand blasting. Only the thin film of powderized "flash" rust on a fresh steel surface can be effectively removed with dry ice blasting. 4.2.1.1. Inductio n (venturi) and direct acceleration blast systems - the effect of the typ e of system on available kinetic energy In a two-hose induction (venturi) carbon dioxide blastin g system, the medium particles are moved from the hopper to the "gun" chamber by suction, where they drop to a very low velocity before being induced into the outflow of the nozzle by a large flow volume of compressed air. Some more advanced two-hose systems employ a small positive pressure to the pellet delivery hose. In any type of two-hose system, since the blast medium particles have only a short distance in which to gain momentum and accelerate to the nozzle exit (usually only 200 to 300 mm), the final particle average velocity is limited to between 60 and 120 meters per second. So, in general, two-hose systems, although not so costly, are limited in their ability to deliver contaminant removal kinetic energy to the surface to be cleaned. When more blasting energy is required, these systems must be "boosted" a t the expense of much more air volume required, and higher blast pressure is re-quired as well, with much more nozzle back thrust, and very much more blast noise generated at the nozzle exit plane. The other type of solid carbon dioxide medium blasting system is like the "pressurized pot" abrasive blasting system common in the sand blasting and Plas-ti c Media Blasting industries. These systems use a single delivery hose from the hopper to the "nozzle" applicator in which both the medium particles and the compressed air travel. These systems are more complex and a little more costly than the inductive two-hose systems, but the advantages gained greatly outweigh the extra initial expense. In a single-hose solid carbon dioxide particle blasting system, sometimes referred to as a "direct acceleration " system, the medium is introduced from the hopper into a single, pre-pressurized blast hose through a sealed airlock feeder. The particles begin their acceleration and velocity increase". In Surface Contamination and Cleaning, 162–63. CRC Press, 2003. http://dx.doi.org/10.1201/9789047403289-25.
Texto completo da fonteTrabalhos de conferências sobre o assunto "FLASH CHAMBER"
Abutayeh, Mohammad, e Yogi Goswami. "Solar Flash Desalination Under Hydrostatically Sustained Vacuum". In ASME 2008 2nd International Conference on Energy Sustainability collocated with the Heat Transfer, Fluids Engineering, and 3rd Energy Nanotechnology Conferences. ASMEDC, 2008. http://dx.doi.org/10.1115/es2008-54075.
Texto completo da fonteLitvinov, Petr A. "Flash Chamber of a Quasi-Continuous Volume Source of Negative Ions". In PRODUCTION AND NEUTRALIZATION OF NEGATIVE IONS AND BEAMS: 10th International Symposium on Production and Neutralization of Negative Ions and Beams. AIP, 2005. http://dx.doi.org/10.1063/1.1908299.
Texto completo da fonteMatsuda, Yoshitaka, Ryoichi Sakai, Takenao Sugi, Satoru Goto, Takeshi Yasunaga e Yasuyuki Ikegami. "Water Level Control of Flash Chamber in a Spray Flash Desalination System with Valve Dynamics and Flow Rate Limitation". In 2019 19th International Conference on Control, Automation and Systems (ICCAS). IEEE, 2019. http://dx.doi.org/10.23919/iccas47443.2019.8971571.
Texto completo da fonteAbdel-Rahim, Yousef M. "Monte Carlo Optimization of Two-Stage Cascade R134A Refrigeration System With Flash Chamber". In ASME 2008 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2008. http://dx.doi.org/10.1115/detc2008-49063.
Texto completo da fonteAkram, Muhammad Saad, Maryam Yeganeh, Qiang Cheng, Ossi Kaario e Martti Larmi. "Experimental Study on Flash Boiling of Ammonia Fuel Sprays – A Potential Alternative Fuel". In WCX SAE World Congress Experience. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2023. http://dx.doi.org/10.4271/2023-01-0304.
Texto completo da fonteIslam, Md, F. Banat, A. Baba e S. Abuyahya. "Design and Development of a Small Multistage Flash Desalination System Using Aspen HYSYS". In ASME-JSME-KSME 2019 8th Joint Fluids Engineering Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/ajkfluids2019-4975.
Texto completo da fonteKay, Peter J., Andrew P. Crayford, Philip J. Bowen e James Luxford. "Flammability of High Flash Point Liquid Fuels". In ASME Turbo Expo 2012: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/gt2012-69536.
Texto completo da fonteBjorgen, Karl Oskar Pires, Inge Saanum, Stian Bratsberg, Patrick Jørgensen, Terese Lovas e David Emberson. "Enhanced Combustion by Photo Ignition of Carbon Nanotubes in a Constant Volume Chamber". In WCX SAE World Congress Experience. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2023. http://dx.doi.org/10.4271/2023-01-0406.
Texto completo da fonteAbutayeh, Mohammad, D. Yogi Goswami e Elias K. Stefanakos. "Sustainable Desalination Process Simulation". In ASME 2010 International Mechanical Engineering Congress and Exposition. ASMEDC, 2010. http://dx.doi.org/10.1115/imece2010-37182.
Texto completo da fonteNocivelli, Lorenzo, Junhao Yan, Kaushik Saha, Gina M. Magnotti, Chia-Fon Lee e Sibendu Som. "Effect of Ambient Pressure on the Behavior of Single-Component Fuels in a Gasoline Multi-Hole Injector". In ASME 2019 Internal Combustion Engine Division Fall Technical Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/icef2019-7258.
Texto completo da fonte