Artigos de revistas sobre o tema "Flexible mechanical metamaterials"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Flexible mechanical metamaterials".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Zhai, Zirui, Yong Wang, and Hanqing Jiang. "Origami-inspired, on-demand deployable and collapsible mechanical metamaterials with tunable stiffness." Proceedings of the National Academy of Sciences 115, no. 9 (2018): 2032–37. http://dx.doi.org/10.1073/pnas.1720171115.
Texto completo da fonteZheng, Xiaoyang, Koichiro Uto, Wei-Hsun Hu, Ta-Te Chen, Masanobu Naito, and Ikumu Watanabe. "Reprogrammable flexible mechanical metamaterials." Applied Materials Today 29 (December 2022): 101662. http://dx.doi.org/10.1016/j.apmt.2022.101662.
Texto completo da fonteYasuda, Hiromi, Hang Shu, Weijian Jiao, Vincent Tournat, and Jordan Raney. "Collisions of nonlinear waves in flexible mechanical metamaterials." Journal of the Acoustical Society of America 151, no. 4 (2022): A41. http://dx.doi.org/10.1121/10.0010592.
Texto completo da fonteJin, Eunji, In Seong Lee, Dongwook Kim, et al. "Metal-organic framework based on hinged cube tessellation as transformable mechanical metamaterial." Science Advances 5, no. 5 (2019): eaav4119. http://dx.doi.org/10.1126/sciadv.aav4119.
Texto completo da fonteZhang, Zhan, Christopher Brandt, Jean Jouve, et al. "Computational Design of Flexible Planar Microstructures." ACM Transactions on Graphics 42, no. 6 (2023): 1–16. http://dx.doi.org/10.1145/3618396.
Texto completo da fonteDykstra, David M. J., Shahram Janbaz, and Corentin Coulais. "The extreme mechanics of viscoelastic metamaterials." APL Materials 10, no. 8 (2022): 080702. http://dx.doi.org/10.1063/5.0094224.
Texto completo da fonteDeng, B., J. R. Raney, K. Bertoldi, and V. Tournat. "Nonlinear waves in flexible mechanical metamaterials." Journal of Applied Physics 130, no. 4 (2021): 040901. http://dx.doi.org/10.1063/5.0050271.
Texto completo da fonteRafsanjani, Ahmad, Katia Bertoldi, and André R. Studart. "Programming soft robots with flexible mechanical metamaterials." Science Robotics 4, no. 29 (2019): eaav7874. http://dx.doi.org/10.1126/scirobotics.aav7874.
Texto completo da fonteWu, Lingling, Bo Li, and Ji Zhou. "Enhanced thermal expansion by micro-displacement amplifying mechanical metamaterial." MRS Advances 3, no. 8-9 (2018): 405–10. http://dx.doi.org/10.1557/adv.2018.217.
Texto completo da fonteSlobozhanyuk, Alexey P., Mikhail Lapine, David A. Powell, et al. "Flexible Helices for Nonlinear Metamaterials." Advanced Materials 25, no. 25 (2013): 3409–12. http://dx.doi.org/10.1002/adma.201300840.
Texto completo da fonteZhou, Xiang, Shixi Zang, and Zhong You. "Origami mechanical metamaterials based on the Miura-derivative fold patterns." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 472, no. 2191 (2016): 20160361. http://dx.doi.org/10.1098/rspa.2016.0361.
Texto completo da fonteDemiquel, A., V. Achilleos, G. Theocharis, and V. Tournat. "Envelope vector solitons in nonlinear flexible mechanical metamaterials." Wave Motion 131 (December 2024): 103394. http://dx.doi.org/10.1016/j.wavemoti.2024.103394.
Texto completo da fonteXue, Chenhao, Nan Li, Shenggui Chen, Jiahua Liang, and Wurikaixi Aiyiti. "The Laser Selective Sintering Controlled Forming of Flexible TPMS Structures." Materials 16, no. 24 (2023): 7565. http://dx.doi.org/10.3390/ma16247565.
Texto completo da fonteTiwari, Ashish. "Future Directions and Research Gaps in Enhancing the Optical Properties of PMMA with Metamaterials." International Journal of Multidisciplinary Research in Science, Engineering and Technology 2, no. 12 (2023): 2303–9. http://dx.doi.org/10.15680/ijmrset.2019.0212013.
Texto completo da fontePagliocca, Nicholas, Kazi Zahir Uddin, Ibnaj Anamika Anni, Chen Shen, George Youssef, and Behrad Koohbor. "Flexible planar metamaterials with tunable Poisson’s ratios." Materials & Design 215 (March 2022): 110446. http://dx.doi.org/10.1016/j.matdes.2022.110446.
Texto completo da fonteTiwari, Ashish. "Enhancing the Optical Properties of PMMA with Metamaterials: Applications and Performance Analysis." International Journal of Multidisciplinary Research in Science, Engineering and Technology 3, no. 12 (2023): 1342–49. http://dx.doi.org/10.15680/ijmrset.2020.0312019.
Texto completo da fonteMazur, Ekaterina, and Igor Shishkovsky. "Additively Manufactured Hierarchical Auxetic Mechanical Metamaterials." Materials 15, no. 16 (2022): 5600. http://dx.doi.org/10.3390/ma15165600.
Texto completo da fonteQi, Wu, Wang Zhigang, Yang Yu, Lu Yifei, Shi Xintong, and Bao Panpan. "Research on compliant wing design technology based on mechanical metamaterials." Journal of Physics: Conference Series 2956, no. 1 (2025): 012029. https://doi.org/10.1088/1742-6596/2956/1/012029.
Texto completo da fonteHu, Fuwen, and Tian Li. "An Origami Flexiball-Inspired Metamaterial Actuator and Its In-Pipe Robot Prototype." Actuators 10, no. 4 (2021): 67. http://dx.doi.org/10.3390/act10040067.
Texto completo da fonteRen, Yulin, Guodong Hao, Xinsa Zhao, and Jianning Han. "A Tunable Z-Shaped Channel Gradient Metamaterial for Enhanced Detection of Weak Acoustic Signals." Crystals 15, no. 3 (2025): 216. https://doi.org/10.3390/cryst15030216.
Texto completo da fonteLiang, Xudong, and Alfred J. Crosby. "Uniaxial stretching mechanics of cellular flexible metamaterials." Extreme Mechanics Letters 35 (February 2020): 100637. http://dx.doi.org/10.1016/j.eml.2020.100637.
Texto completo da fonteDeng, Bolei, Siqin Yu, Antonio E. Forte, Vincent Tournat, and Katia Bertoldi. "Characterization, stability, and application of domain walls in flexible mechanical metamaterials." Proceedings of the National Academy of Sciences 117, no. 49 (2020): 31002–9. http://dx.doi.org/10.1073/pnas.2015847117.
Texto completo da fonteHu, Songtao, Xiaobao Cao, Tom Reddyhoff, et al. "Liquid repellency enhancement through flexible microstructures." Science Advances 6, no. 32 (2020): eaba9721. http://dx.doi.org/10.1126/sciadv.aba9721.
Texto completo da fonteZhou, Shengru, Chao Liang, Ziqi Mei, et al. "Design and Implementation of a Flexible Electromagnetic Actuator for Tunable Terahertz Metamaterials." Micromachines 15, no. 2 (2024): 219. http://dx.doi.org/10.3390/mi15020219.
Texto completo da fonteSekiguchi, Ten, Hidetaka Ueno, Vivek Anand Menon, et al. "UV-curable Polydimethylsiloxane Photolithography and Its Application to Flexible Mechanical Metamaterials." Sensors and Materials 35, no. 6 (2023): 1995. http://dx.doi.org/10.18494/sam4351.
Texto completo da fonteYang, Yicheng. "Overview of the Current State of Research on Metamaterials in Biomedicine." BIO Web of Conferences 142 (2024): 03020. https://doi.org/10.1051/bioconf/202414203020.
Texto completo da fonteLi, Nan, Chenhao Xue, Shenggui Chen, et al. "3D Printing of Flexible Mechanical Metamaterials: Synergistic Design of Process and Geometric Parameters." Polymers 15, no. 23 (2023): 4523. http://dx.doi.org/10.3390/polym15234523.
Texto completo da fonteDunne, Jai. "Chainmail inspired metamaterials for use in protective sports equipment." Graduate Journal of Sports Science, Coaching, Management, & Rehabilitation 1, no. 3 (2024): 36. http://dx.doi.org/10.19164/gjsscmr.v1i3.1509.
Texto completo da fonteBar-Sinai, Yohai, Gabriele Librandi, Katia Bertoldi, and Michael Moshe. "Geometric charges and nonlinear elasticity of two-dimensional elastic metamaterials." Proceedings of the National Academy of Sciences 117, no. 19 (2020): 10195–202. http://dx.doi.org/10.1073/pnas.1920237117.
Texto completo da fonteLuo, Sisi, Jianjiao Hao, Fuju Ye, et al. "Evolution of the Electromagnetic Manipulation: From Tunable to Programmable and Intelligent Metasurfaces." Micromachines 12, no. 8 (2021): 988. http://dx.doi.org/10.3390/mi12080988.
Texto completo da fonteLi, Jian, Yi Yuan, Jiao Wang, Ronghao Bao, and Weiqiu Chen. "Propagation of nonlinear waves in graded flexible metamaterials." International Journal of Impact Engineering 156 (October 2021): 103924. http://dx.doi.org/10.1016/j.ijimpeng.2021.103924.
Texto completo da fonteFilipov, Evgueni T., Tomohiro Tachi, and Glaucio H. Paulino. "Origami tubes assembled into stiff, yet reconfigurable structures and metamaterials." Proceedings of the National Academy of Sciences 112, no. 40 (2015): 12321–26. http://dx.doi.org/10.1073/pnas.1509465112.
Texto completo da fonteChen, Xing, Li Cai, and Jihong Wen. "Extreme mechanical metamaterials with independently adjustable elastic modulus and mass density." Applied Physics Express 15, no. 4 (2022): 047001. http://dx.doi.org/10.35848/1882-0786/ac5872.
Texto completo da fonteSaoud, Ahmad, Diogo Queiros-Conde, Ahmad Omar, and Thomas Michelitsch. "Intelligent Anti-Seismic Foundation: The Role of Fractal Geometry." Buildings 13, no. 8 (2023): 1891. http://dx.doi.org/10.3390/buildings13081891.
Texto completo da fonteWang, Zhigang, Qi Wu, Yifei Lu, et al. "Design of a Distributedly Active Morphing Wing Based on Digital Metamaterials." Aerospace 9, no. 12 (2022): 762. http://dx.doi.org/10.3390/aerospace9120762.
Texto completo da fonteEffah, Elijah, Ezekiel Edward Nettey-Oppong, Ahmed Ali, Kyung Min Byun, and Seung Ho Choi. "Tunable Metasurfaces Based on Mechanically Deformable Polymeric Substrates." Photonics 10, no. 2 (2023): 119. http://dx.doi.org/10.3390/photonics10020119.
Texto completo da fonteLi, Jian, Ronghao Bao, and Weiqiu Chen. "Exploring static responses, mode transitions, and feasible tunability of Kagome-based flexible mechanical metamaterials." Journal of the Mechanics and Physics of Solids 186 (May 2024): 105599. http://dx.doi.org/10.1016/j.jmps.2024.105599.
Texto completo da fonteZhuang, Shulei, Xinyu Li, Tong Yang, et al. "Graphene-Based Absorption–Transmission Multi-Functional Tunable THz Metamaterials." Micromachines 13, no. 8 (2022): 1239. http://dx.doi.org/10.3390/mi13081239.
Texto completo da fonteSong, Yihao, and Yanfeng Shen. "Highly morphing and reconfigurable fluid–solid interactive metamaterials for tunable ultrasonic guided wave control." Applied Physics Letters 121, no. 26 (2022): 264102. http://dx.doi.org/10.1063/5.0117634.
Texto completo da fonteFeng, Xiaobin, Ke Cao, Xiege Huang, Guodong Li, and Yang Lu. "Nanolayered CoCrFeNi/Graphene Composites with High Strength and Crack Resistance." Nanomaterials 12, no. 12 (2022): 2113. http://dx.doi.org/10.3390/nano12122113.
Texto completo da fonteKim, Jang Hwan, Su Eon Lee, and Bong Hoon Kim. "Applications of flexible and stretchable three-dimensional structures for soft electronics." Soft Science 3, no. 2 (2023): 16. http://dx.doi.org/10.20517/ss.2023.07.
Texto completo da fonteYu, Junmin, Can Nerse, Kyoung-jin Chang, and Semyung Wang. "A framework of flexible locally resonant metamaterials for attachment to curved structures." International Journal of Mechanical Sciences 204 (August 2021): 106533. http://dx.doi.org/10.1016/j.ijmecsci.2021.106533.
Texto completo da fonteHu, Zhou, Zhibo Wei, Kun Wang, et al. "Engineering zero modes in transformable mechanical metamaterials." Nature Communications 14, no. 1 (2023). http://dx.doi.org/10.1038/s41467-023-36975-2.
Texto completo da fonteBertoldi, Katia, Vincenzo Vitelli, Johan Christensen, and Martin van Hecke. "Flexible mechanical metamaterials." Nature Reviews Materials 2, no. 11 (2017). http://dx.doi.org/10.1038/natrevmats.2017.66.
Texto completo da fonteLi, Lin, Feiyu Yang, Fufu Yang, Rongfu Lin, and Jun Zhang. "Fully foldable mechanical metamaterials with isotropic auxeticity and its generated multi-mode folding form." Journal of Mechanisms and Robotics, December 6, 2024, 1–27. https://doi.org/10.1115/1.4067345.
Texto completo da fonteYang, Haiying, Haibao Lu, Dong-Wei Shu, and Yong Qing (Richard) Fu. "Multimodal origami shape memory metamaterials undergoing compression-twist coupling." Smart Materials and Structures, June 8, 2023. http://dx.doi.org/10.1088/1361-665x/acdcd7.
Texto completo da fonteEl Helou, Charles, Philip R. Buskohl, Christopher E. Tabor, and Ryan L. Harne. "Digital logic gates in soft, conductive mechanical metamaterials." Nature Communications 12, no. 1 (2021). http://dx.doi.org/10.1038/s41467-021-21920-y.
Texto completo da fonteHan, Donghai, Wenkang Li, Yushan Hou, et al. "Controllable Wrinkling Inspired Multifunctional Metamaterial for Near‐Field and Holographic Displays." Laser & Photonics Reviews, December 20, 2023. http://dx.doi.org/10.1002/lpor.202300879.
Texto completo da fonteSano, Tomohiko G., Emile Hohnadel, Toshiyuki Kawata, Thibaut Métivet, and Florence Bertails-Descoubes. "Randomly stacked open cylindrical shells as functional mechanical energy absorber." Communications Materials 4, no. 1 (2023). http://dx.doi.org/10.1038/s43246-023-00383-2.
Texto completo da fonteHan, Dong, Fan Yang, Yi Zhang, and Xin Ren. "A novel square-section auxetic lattice tubular metamaterial with favourable bending behaviour." Smart Materials and Structures, July 11, 2025. https://doi.org/10.1088/1361-665x/adeee5.
Texto completo da fonte