Literatura científica selecionada sobre o tema "FLEXIBLE PIEZOELECTRIC"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "FLEXIBLE PIEZOELECTRIC".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "FLEXIBLE PIEZOELECTRIC"
XU, Qi, Long GU e Yong QIN. "Flexible piezoelectric nanogenerators". Chinese Science Bulletin 61, n.º 12 (18 de agosto de 2015): 1288–97. http://dx.doi.org/10.1360/n972015-00724.
Texto completo da fonteZhou, Lingyu. "Effective design of advanced flexible piezoelectric materials". Applied and Computational Engineering 7, n.º 1 (21 de julho de 2023): 179–87. http://dx.doi.org/10.54254/2755-2721/7/20230431.
Texto completo da fonteSa-Gong, G., A. Safari, S. J. Jang e R. E. Newnham. "Poling flexible piezoelectric composites". Ferroelectrics Letters Section 5, n.º 5 (março de 1986): 131–42. http://dx.doi.org/10.1080/07315178608202472.
Texto completo da fonteGuo, Shuaibing, Xuexin Duan, Mengying Xie, Kean Chin Aw e Qiannan Xue. "Composites, Fabrication and Application of Polyvinylidene Fluoride for Flexible Electromechanical Devices: A Review". Micromachines 11, n.º 12 (3 de dezembro de 2020): 1076. http://dx.doi.org/10.3390/mi11121076.
Texto completo da fonteBanno, Hisao, Kohji Ogura, Hideo Sobue e Kanji Ohya. "Piezoelectric and Acoustic Properties of Piezoelectric Flexible Composites". Japanese Journal of Applied Physics 26, S1 (1 de janeiro de 1987): 153. http://dx.doi.org/10.7567/jjaps.26s1.153.
Texto completo da fonteZhou, Yu Hua, Yu Tao Ju e Chang Sheng Zhou. "Design of Flexible Wing with Embedded Piezoelectric Actuator". Applied Mechanics and Materials 325-326 (junho de 2013): 951–55. http://dx.doi.org/10.4028/www.scientific.net/amm.325-326.951.
Texto completo da fonteChoi, Sejin, Jihwan Lim, Hansol Park e Han Seong Kim. "A Flexible Piezoelectric Device for Frequency Sensing from PVDF/SWCNT Composite Fibers". Polymers 14, n.º 21 (7 de novembro de 2022): 4773. http://dx.doi.org/10.3390/polym14214773.
Texto completo da fonteLi, Chong, Liang Shen, Jiang Shao e Jiwen Fang. "Simulation and Experiment of Active Vibration Control Based on Flexible Piezoelectric MFC Composed of PZT and PI Layer". Polymers 15, n.º 8 (7 de abril de 2023): 1819. http://dx.doi.org/10.3390/polym15081819.
Texto completo da fonteRyu, Jeongjae, Hanbert Jeong, Yugang Chen, Chungik Oh, Jaegyu Kim, Hongjun Kim, Seongwoo Cho et al. "Flexible piezoelectric liquid volume sensor". Sensors and Actuators A: Physical 276 (junho de 2018): 219–25. http://dx.doi.org/10.1016/j.sna.2018.04.035.
Texto completo da fonteLu, Lijun, Wenqing Ding, Jingquan Liu e Bin Yang. "Flexible PVDF based piezoelectric nanogenerators". Nano Energy 78 (dezembro de 2020): 105251. http://dx.doi.org/10.1016/j.nanoen.2020.105251.
Texto completo da fonteTeses / dissertações sobre o assunto "FLEXIBLE PIEZOELECTRIC"
Malik, Nihal S. "Adaptive vibration control of flexible structures using piezoelectric actuators". Thesis, University of Bristol, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.509770.
Texto completo da fonteLi, Xinming. "Piezoelectric-based structural health monitoring of flexible beam connection damage". Thesis, University of Ottawa (Canada), 2003. http://hdl.handle.net/10393/26511.
Texto completo da fonteCen, Lejun. "Fish-like locomotion using flexible piezoelectric composites for untethered aquatic robotics". Thesis, Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/45864.
Texto completo da fonteJia, Jianhu. "Optimization of piezoelectric actuator systems for vibration control of flexible structures". Diss., Virginia Tech, 1990. http://hdl.handle.net/10919/39754.
Texto completo da fontePh. D.
Obal, Michael Walter. "Vibration control of flexible structures using piezoelectric devices as sensors and actuators". Diss., Georgia Institute of Technology, 1986. http://hdl.handle.net/1853/12025.
Texto completo da fonteSamur, Algan. "Flexible piezoelectric composites and concepts for bio-inspired dynamic bending-twisting actuation". Thesis, Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/47680.
Texto completo da fonteMoghani, Taraneh. "Controller switching policy in flexible plates using PZT actuators subject to spatiotemporal variations of disturbances". Link to electronic thesis, 2004. http://www.wpi.edu/Pubs/ETD/Available/etd-0430104-114246.
Texto completo da fonteSong, Li. "Application of electroless plating for fabrication of flexible and integrated piezoelectric ultrasonic sensors". Thesis, McGill University, 2008. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=21961.
Texto completo da fonteLes capteurs ultrasonores flexible (CUF) et intégré (CUI) sont très intéressants pour le suivi de la santé structurelle (SSS) des pièces de structures et de composites, composées à partir de carbone/époxyde (C/Ep). Parce que le C/Ep n'a pas suffisamment de conductivité électrique, une électrode de base est nécessaire pour la fabrication de CUIs. De plus, pour le CUF utilisant du polyimide (PI) comme membrane isolante nécessite aussi l'utilisation d'une électrode de base. Un des principaux objectifs de ce mémoire est de remédier à ce problème par le développement d'une technique de placage au tampon. Cette dernière déposera du nickel (Ni) ou de l'argent (Ag) sur le C/Ep et le PI pour obtenir des CUIs ou des CUFs. Les prétraitements (nettoyage, attaque chimique, sensibilisation, activation et réduction) et les conditions de réaction (bain chimique, température, temps, agitation, etc.) ont été étudiés. Les procédures pour le placage au tampon du nickel (PTN) à la température de la pièce (TP) et à 90C ainsi que pour l'Ag à TP furent développées. Les adhésions de surface du Ni ou de l'Ag avec le substrat furent testées. Les conductivités électriques des électrodes de base furent testées avec un ohmmètre. Un film piézo-électrique de 50~60 μm fut fabriqué par une technique sol-gel. Les CUI et CUF fabriqués avec l'électrode de base faite à partir du PTN, du film piézo-électrique et une pâte d'Ag comme électrode de surface, excelle bien pour les besoins en SSS.
Newman, Scott M. "Active damping control of a flexible space structure using piezoelectric sensors and actuators". Thesis, Monterey, California. Naval Postgraduate School, 1992. http://hdl.handle.net/10945/23517.
Texto completo da fonteThis thesis details the experimental analysis of an active damping control technique applied to the Naval Postgraduate School's Flexible Spacecraft Simulator using piezoceramic sensors and actuators. The mass property of the flexible arm is varied to study the frequency effects on the Positive Position Feedback (PPF) algorithm. Multi-modal dynamics response is analytically studied using a finite-element model of a cantilevered beam while under the influence of three different control laws: a basic law derived rom the Lyapunov Stability Theorem, PPF and Strain Rate Feedback (SRF). The advantages and disadvantages of using PPF and SRF for active damping control are discussed.
Swathanthira, Kumar Murali Murugavel Manjakkattuvalasu. "Implementation of an actuator placement, switching algorithm for active vibration control in flexible structures". Link to electronic thesis, 2002. http://www.wpi.edu/Pubs/ETD/Available/etd-1120102-210634.
Texto completo da fonteKeywords: Actuator placement algorithm; piezoelectric actuators; LQR; Galerkin; supervisory control; active vibration control; FEA; switching policy; dSPACE. Includes bibliographical references (p. 58-64).
Livros sobre o assunto "FLEXIBLE PIEZOELECTRIC"
Newman, Scott M. Active damping control of a flexible space structure using piezoelectric sensors and actuators. Monterey, Calif: Naval Postgraduate School, 1992.
Encontre o texto completo da fonteYang, B. Flexible Piezoelectric Energy Harvesters AndSensors. Wiley & Sons, Limited, John, 2022.
Encontre o texto completo da fonteYi, Zhiran, Bin Yang e Chengkuo Lee. Flexible Piezoelectric Energy Harvesters and Sensors. Wiley & Sons, Incorporated, John, 2022.
Encontre o texto completo da fonteYi, Zhiran, Bin Yang e Chengkuo Lee. Flexible Piezoelectric Energy Harvesters and Sensors. Wiley & Sons, Incorporated, John, 2022.
Encontre o texto completo da fonteYi, Zhiran, Bin Yang e Chengkuo Lee. Flexible Piezoelectric Energy Harvesters and Sensors. Wiley & Sons, Incorporated, John, 2022.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "FLEXIBLE PIEZOELECTRIC"
Sengupta, Debarun, e Ajay Giri Prakash Kottapalli. "Flexible and Wearable Piezoelectric Nanogenerators". In Self-Powered and Soft Polymer MEMS/NEMS Devices, 31–60. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-05554-7_2.
Texto completo da fonteDarshan, B. A., Kumar E. Dushyantha, H. S. Jithendra, A. M. Raghavendra, Kumar M. S. Praveen e B. S. Madhukar. "Flexible Piezoelectric Nanogenerator: PVDF-CsPbBr3 Nanocomposite". In Springer Proceedings in Physics, 121–29. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-58868-7_14.
Texto completo da fonteZhang, Han. "Advanced Manufacturing of Flexible Piezoelectric Arrays". In Materials in Advanced Manufacturing, 47–100. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003182146-2.
Texto completo da fonteAfsarimanesh, Nasrin, Anindya Nag e Ghobad Shafiei Sabet. "Flexible Piezoelectric and Triboelectric Sensors for Energy Harvesting Applications". In Flexible Sensors for Energy-Harvesting Applications, 131–52. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-99600-0_6.
Texto completo da fonteChuang, Cheng-Hsin. "Flexible Piezoelectric Tactile Sensors with Structural Electrodes Array". In Lecture Notes in Electrical Engineering, 189–202. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-00578-7_11.
Texto completo da fonteRakotondrabe, Micky. "Feedforward Control of Flexible and Nonlinear Piezoelectric Actuators". In Smart Materials-Based Actuators at the Micro/Nano-Scale, 207–27. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-6684-0_10.
Texto completo da fonteMeurer, Thomas. "Model Equations for Flexible Structures with Piezoelectric Actuation". In Communications and Control Engineering, 51–75. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-30015-8_4.
Texto completo da fonteZhang, Han. "Application and Research Trends of Flexible Piezoelectric Arrays". In Materials in Advanced Manufacturing, 101–65. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003182146-3.
Texto completo da fonteWazed Ali, S., e Satyaranjan Bairagi. "Flexible Piezoelectric Nanogenerator Composed of Electrospun Nanofibrous Web". In Fundamentals of Nano–Textile Science, 31–49. New York: Apple Academic Press, 2022. http://dx.doi.org/10.1201/9781003277316-3.
Texto completo da fonteLe Magueresse, Romain, Frédéric Giraud, Fabrice Casset, Anis Kaci, Brigitte Desloges e Mikael Colin. "Preliminary Design of a Flexible Haptic Surface". In Haptics: Science, Technology, Applications, 207–15. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-06249-0_24.
Texto completo da fonteTrabalhos de conferências sobre o assunto "FLEXIBLE PIEZOELECTRIC"
Sun, Wei. "Modeling of flexible piezoelectric laminates". In 1993 North American Conference on Smart Structures and Materials, editado por Nesbitt W. Hagood e Gareth J. Knowles. SPIE, 1993. http://dx.doi.org/10.1117/12.152785.
Texto completo da fonteWang, PengYingkai, Li Sui, GuoHua Liu e GengChen Shi. "Flexible piezoelectric wind energy generator". In 4th International Conference on Computer, Mechatronics, Control and Electronic Engineering. Paris, France: Atlantis Press, 2015. http://dx.doi.org/10.2991/iccmcee-15.2015.104.
Texto completo da fonteMagueresse, Romain Le, Fabrice Casset, Frederic Giraud, Brigitte Desloges, Nadine David, Anis Kaci, Adelaide Berdague e Mikael Colin. "Piezoelectric flexible haptic interface development". In 2022 23rd International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE). IEEE, 2022. http://dx.doi.org/10.1109/eurosime54907.2022.9758912.
Texto completo da fonteLiu, Tianning, Margeaux Wallace, Susan Trolier-McKinstry e Thomas N. Jackson. "Piezoelectric thin films on polyimide substrates for flexible piezoelectric devices". In 2017 75th Device Research Conference (DRC). IEEE, 2017. http://dx.doi.org/10.1109/drc.2017.7999459.
Texto completo da fonteSultana, Ayesha, Tapas Ranjan Middya e Dipankar Mandal. "ZnS-paper based flexible piezoelectric nanogenerator". In DAE SOLID STATE PHYSICS SYMPOSIUM 2017. Author(s), 2018. http://dx.doi.org/10.1063/1.5029058.
Texto completo da fonteLIU, Jian-jun, Xiang-hua CHEN, Hong ZUO e Qun LI. "Energy Harvesting About Flexible Piezoelectric Material". In 2020 15th Symposium on Piezoelectrcity, Acoustic Waves and Device Applications (SPAWDA). IEEE, 2021. http://dx.doi.org/10.1109/spawda51471.2021.9445521.
Texto completo da fonteCerezo Sanchez, Maria, Siming Zuo, Alexandru Moldovan, Sandy Cochran, Kianoush Nazarpour e Hadi Heidari. "Flexible Piezoelectric Sensors for Miniaturized Sonomyography". In 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). IEEE, 2021. http://dx.doi.org/10.1109/embc46164.2021.9630342.
Texto completo da fonteWillens, Kyle, Richard Mannschreck, Blake Muzinich, Christopher Rosa, Barkan Kavlicoglu, Geoff Brennecka e Faramarz Gordaninejad. "Blast wave sensing from flexible piezoelectric materials". In Smart Biomedical and Physiological Sensor Technology XVI, editado por Brian M. Cullum, Eric S. McLamore e Douglas Kiehl. SPIE, 2019. http://dx.doi.org/10.1117/12.2519141.
Texto completo da fonteKim, H. J., e Y. J. Kim. "Flexible ceramic-polymer nanocomposite piezoelectric pressure sensor". In 2018 IEEE 18th International Conference on Nanotechnology (IEEE-NANO). IEEE, 2018. http://dx.doi.org/10.1109/nano.2018.8626263.
Texto completo da fonteShelton, C. T., C. Dandeneau, V. Matias e B. J. Gibbons. "Epitaxial piezoelectric thin films on flexible substrates". In 2008 17th IEEE International Symposium on the Applications of Ferroelectrics (ISAF). IEEE, 2008. http://dx.doi.org/10.1109/isaf.2008.4693800.
Texto completo da fonteRelatórios de organizações sobre o assunto "FLEXIBLE PIEZOELECTRIC"
Near, Craig D. Flexible Fabrication of High Performance Piezoelectric Actuators by Injection Molding. Fort Belvoir, VA: Defense Technical Information Center, novembro de 1999. http://dx.doi.org/10.21236/ada379116.
Texto completo da fonteGalili, Naftali, Roger P. Rohrbach, Itzhak Shmulevich, Yoram Fuchs e Giora Zauberman. Non-Destructive Quality Sensing of High-Value Agricultural Commodities Through Response Analysis. United States Department of Agriculture, outubro de 1994. http://dx.doi.org/10.32747/1994.7570549.bard.
Texto completo da fonte