Literatura científica selecionada sobre o tema "Formulation of Nanocomposite Materials"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Formulation of Nanocomposite Materials".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Formulation of Nanocomposite Materials"
Vafaeva, Khristina Maksudovna, Abhishek Chhetri, Prerak Sudan, Mukul Mishra, B. Pakkiraiah e Chandra Mohan. "Polymer Matrix Nanocomposites for Sustainable Packaging: A Green Approach". E3S Web of Conferences 511 (2024): 01008. http://dx.doi.org/10.1051/e3sconf/202451101008.
Texto completo da fonteVafaeva, Khristina Maksudovna, Abhishek Chhetri, Prerak Sudan, Mukul Mishra, B. Sankara Babu e Binitendra Naath Mongal. "Polymer Matrix Nanocomposites for Sustainable Packaging: A Green Approach". E3S Web of Conferences 537 (2024): 08001. http://dx.doi.org/10.1051/e3sconf/202453708001.
Texto completo da fonteCarrascosa, Ana, Jaime S. Sánchez, María Guadalupe Morán-Aguilar, Gemma Gabriel e Fabiola Vilaseca. "Advanced Flexible Wearable Electronics from Hybrid Nanocomposites Based on Cellulose Nanofibers, PEDOT:PSS and Reduced Graphene Oxide". Polymers 16, n.º 21 (29 de outubro de 2024): 3035. http://dx.doi.org/10.3390/polym16213035.
Texto completo da fonteMarin, Maria Minodora, Ioana Catalina Gifu, Gratiela Gradisteanu Pircalabioru, Madalina Albu Kaya, Rodica Roxana Constantinescu, Rebeca Leu Alexa, Bogdan Trica et al. "Microbial Polysaccharide-Based Formulation with Silica Nanoparticles; A New Hydrogel Nanocomposite for 3D Printing". Gels 9, n.º 5 (19 de maio de 2023): 425. http://dx.doi.org/10.3390/gels9050425.
Texto completo da fonteHAFEZ, INAS H., MOHAMED R. BERBER, KEIJI MINAGAWA, TAKESHI MORI e MASAMI TANAKA. "FORMULATION OF POLYACRYLIC ACID-LAYERED DOUBLE HYDROXIDE COMPOSITE SYSTEM AS A SOIL CONDITIONER FOR WATER MANAGEMENT". International Journal of Modern Physics: Conference Series 06 (janeiro de 2012): 138–43. http://dx.doi.org/10.1142/s2010194512003078.
Texto completo da fonteGatos, K. G., A. A. Apostolov e J. Karger-Kocsis. "Compatibilizer Effect of Grafted Glycidyl Methacrylate on EPDM/Organoclay Nanocomposites". Materials Science Forum 482 (abril de 2005): 347–50. http://dx.doi.org/10.4028/www.scientific.net/msf.482.347.
Texto completo da fontePinto, Susana C., Paula A. A. P. Marques, Romeu Vicente, Luís Godinho e Isabel Duarte. "Hybrid Structures Made of Polyurethane/Graphene Nanocomposite Foams Embedded within Aluminum Open-Cell Foam". Metals 10, n.º 6 (9 de junho de 2020): 768. http://dx.doi.org/10.3390/met10060768.
Texto completo da fonteGuz, Alexander N., e Jeremiah J. Rushchitsky. "Some Fundamental Aspects of Mechanics of Nanocomposite Materials and Structural Members". Journal of Nanotechnology 2013 (2013): 1–16. http://dx.doi.org/10.1155/2013/641581.
Texto completo da fonteReddy, J. N., Vinu U. Unnikrishnan e Ginu U. Unnikrishnan. "Recent advances in the analysis of nanotube-reinforced polymeric biomaterials". Journal of the Mechanical Behavior of Materials 22, n.º 5-6 (1 de dezembro de 2013): 137–48. http://dx.doi.org/10.1515/jmbm-2013-0021.
Texto completo da fonteNajem Abed, Nisreen Abdul Rahman, Suha Mujahed Abudoleh, Iyad Daoud Alshawabkeh, Abdul Rahman Najem Abed, Rasha Khaled Ali Abuthawabeh e Samer Hasan Hussein-Al-Ali. "Aspirin Drug Intercalated into Zinc-Layered Hydroxides as Nanolayers: Structure and In Vitro Release". Nano Hybrids and Composites 18 (novembro de 2017): 42–52. http://dx.doi.org/10.4028/www.scientific.net/nhc.18.42.
Texto completo da fonteTeses / dissertações sobre o assunto "Formulation of Nanocomposite Materials"
Acquadro, Julien. "Étude des propriétés tribologiques et électriques de revêtements sol-gel comme alternative anticorrosion au cadmium et au chrome hexavalent pour la connectique en environnements sévères". Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPAST150.
Texto completo da fonteConnector technology involves the components that create electrical connections between different systems. In critical sectors such as aerospace and military, these connections must be highly reliable and able to perform under harsh conditions. Therefore, the electrical contacts within connectors are protected by housings made from aluminium alloys, like AA6061, which must meet three essential criteria: electrical conductivity, mechanical strength, and corrosion resistance. Currently, these properties are achieved through surface protection coatings based on cadmium passivated with hexavalent chromium (VI). However, since 2017, this solution has been deemed unacceptable in Europe due to evolving RoHS and REACH directives and regulations, given the severe toxicity of cadmium and hexavalent chromium to both the environment and human health.This thesis is part of a significant industrial collaboration involving seven partners focused on developing and producing coatings to replace cadmium passivated with chromium (VI). Among the various approaches explored, the most innovative and promising involves using sol-gel coatings made conductive through the incorporation of appropriate conductive fillers. The strategy entails implementing these coatings at the laboratory scale and subjecting them to rigorous industrial qualification tests on connector housings.This thesis aims to enhance understanding of how various stages in the development of coatings affect their properties related to electrical conduction, wear resistance, and anti-corrosion capabilities. Deposits applied to laboratory model specimens were studied at both macroscopic and microscopic scales to determine the optimal synthesis parameters. These parameters include sol-gel precursors, amount of water, maturation conditions, and deposition techniques, all of which are adjusted based on the physicochemical and structural properties of the resulting films. The influence of the type and quantity of conductive fillers, whether carbon-based or metallic, on properties such as electrical conduction, wear resistance, mechanical strength, and corrosion protection, was rigorously evaluated.Periodic comparisons were made between these study results and the outcomes of qualification tests conducted on industrially complex connector housings coated with the same formulations. This allowed the identification of challenges to overcome in achieving the necessary properties of electrical conduction, mechanical strength, and corrosion resistance. These efforts also provide development prospects for the future of this technology in the connector industry
Oyharçabal, Mathieu. "Synthèse, formulation, et mise en oeuvre de nanomatériaux conducteurs base poly(aniline) / nanotubes de carbone pour des applications micro-ondes". Thesis, Bordeaux 1, 2012. http://www.theses.fr/2012BOR14633.
Texto completo da fonteThis thesis deals with the formulation of electrically conductive nanocomposites for microwave applications. The main purpose is to process radar-absorbent materials, more particularly at the X band. (8-12 GHz). Polyaniline and carbon nanotubes, dispersed in an epoxyde matrix, have been selected. Different morphologies of polyaniline have been synthesized to study its impact on the absorption properties of composites. Using flake-like polyaniline showing high anisotropy and aspect ratio increases conductivity and dielectric losses of composites. Moreover, its association with carbon nanotubes significantly improves the absorption properties at microwaves frequencies. Efficient radar absorbing screens, showing reflection losses lower than -20 dB, have been calculated and processed confirming the potential of these materials for stealth applications
PAMMI, SRI LAXMI. "CARBON NANOCOMPOSITE MATERIALS". University of Cincinnati / OhioLINK, 2003. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1069881274.
Texto completo da fonteThomas, Michael David Ross. "Electrical phenomena in nanocomposite materials". Thesis, University of Cambridge, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.621926.
Texto completo da fonteBobrinetskiy, I. I., A. Y. Gerasimenko, L. Ichkitidze, O. R. Khrolova, R. V. Morozov, V. M. Podgaetsky e S. V. Selishchev. "Nanocomposite Materials for Cell Growth". Thesis, Sumy State University, 2013. http://essuir.sumdu.edu.ua/handle/123456789/35452.
Texto completo da fonteLee, Ji Hoon. "Tensegrity-inspired nanocomposite structures". Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/44839.
Texto completo da fonteBera, Chandan. "Thermo electric properties of nanocomposite materials". Phd thesis, Ecole Centrale Paris, 2010. http://tel.archives-ouvertes.fr/tel-00576360.
Texto completo da fonteYani, Yin. "Molecular dynamics simulation of nanocomposite materials". [Ames, Iowa : Iowa State University], 2009.
Encontre o texto completo da fonteDi, Carlo Lidia. "Nanocomposite cathodic materials for secondary cells". Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät, 2017. http://dx.doi.org/10.18452/17765.
Texto completo da fonteHexagonal tungsten bronze (HTB)-FeF3∙0.33H2O xerogel and HTB-FeF3∙0.33H2O/GO nanocomposite were firstly obtained by a room temperature fluorolytic sol-gel approach in MeOH, and their electrochemical properties evaluated. Operando Mössbauer spectroscopy and X-Ray diffraction were employed to investigate the reaction mechanism during reaction with lithium. The fluoride evidenced a complex behavior, with structural collapse of the HTB phase and gradual transformation into FeF2-rutile-like nanodomains, becoming the predominant component all along the reaction. XRD confirmed the amorphization of the electroactive material. Structural optimization of HTB-FeF3·0.33H2O was then achieved by a microwave-assisted fluorolytic sol-gel in benzyl alcohol. The procedure allowed the synthesis of phase pure nanoparticles of ~30 nm in diameter, along with the production of a reduced graphene oxide (RGO)-based nanocomposite and the reduction of reaction times. Deposition onto conductive RGO resulted beneficial for the electrochemical performance of the fluoride, which was able to sustain repeated cycling at different C-rates and recovered full capacity after more than 50 cycles with respect to the unsupported HTB-FeF3·0.33H2O. Aiming at the production of active ions-holding materials to solve safety issues related to the use of metallic anodes, necessary with structures such as HTB-FeF3·0.33H2O, Na-containing hexafluoroferrate nanocomposites were produced using RGO and partially oxidized carbon black (ox-CB) as conductive carbons. Carbon type greatly affected the electrochemical performance, whose best improvement was obtained using RGO as support
Ye, Yueping. "Microstructure and properties of epoxy/halloysite nanocomposite /". View abstract or full-text, 2006. http://library.ust.hk/cgi/db/thesis.pl?MECH%202006%20YE.
Texto completo da fonteLivros sobre o assunto "Formulation of Nanocomposite Materials"
Sun, Rong, Ruxu Du e Yu Shuhui. Functional nanocomposite materials. Durnten-Zurich: Trans Tech Publishing, 2012.
Encontre o texto completo da fonteGulati, Shikha, ed. Chitosan-Based Nanocomposite Materials. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-5338-5.
Texto completo da fonteMittal, Vikas. Advances in polymer nanocomposite technology. Hauppauge, NY: Nova Science Publishers, 2009.
Encontre o texto completo da fonteMahler, Erne, e Detlev Seiler. Carbon nanotube and nanocomposite research. Hauppauge, N.Y: Nova Science Publishers, 2011.
Encontre o texto completo da fonteKar, Kamal K., ed. Handbook of Nanocomposite Supercapacitor Materials III. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-68364-1.
Texto completo da fonteKar, Kamal K., ed. Handbook of Nanocomposite Supercapacitor Materials II. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-52359-6.
Texto completo da fonteKar, Kamal K., ed. Handbook of Nanocomposite Supercapacitor Materials I. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-43009-2.
Texto completo da fonteAvalos Belmontes, Felipe, Francisco J. González e Miguel Ángel López-Manchado, eds. Green-Based Nanocomposite Materials and Applications. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-18428-4.
Texto completo da fonteKar, Kamal K., ed. Handbook of Nanocomposite Supercapacitor Materials IV. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-23701-0.
Texto completo da fontePogrebnjak, Alexander D., Yang Bing e Martin Sahul, eds. Nanocomposite and Nanocrystalline Materials and Coatings. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-2667-7.
Texto completo da fonteCapítulos de livros sobre o assunto "Formulation of Nanocomposite Materials"
Salam, Haipan, e Yu Dong. "Properties of Optimal Material Formulation of Bioepoxy/Clay Nanocomposites". In Bioepoxy/Clay Nanocomposites, 171–99. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-7297-2_6.
Texto completo da fonteSalam, Haipan, e Yu Dong. "Morphological Structures of Bioepoxy/Clay Nanocomposites with Optimum Material Formulation". In Bioepoxy/Clay Nanocomposites, 145–70. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-7297-2_5.
Texto completo da fonteParameswaranpillai, Jyotishkumar, Nishar Hameed, Thomas Kurian e Yingfeng Yu. "Introduction to Nanomaterials and Nanocomposites". In Nanocomposite Materials, 1–4. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2016. http://dx.doi.org/10.1201/9781315372310-2.
Texto completo da fonteGatos, K. G., e Y. W. Leong. "Classification of Nanomaterials and Nanocomposites". In Nanocomposite Materials, 5–36. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2016. http://dx.doi.org/10.1201/9781315372310-3.
Texto completo da fonteRamazani S.A., A., Y. Tamsilian e M. Shaban. "Synthesis of Nanomaterials". In Nanocomposite Materials, 37–80. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2016. http://dx.doi.org/10.1201/9781315372310-4.
Texto completo da fonteRodriguez, Veronica Marchante, e Hrushikesh A. Abhyankar. "Optical Properties of Nanomaterials". In Nanocomposite Materials, 81–103. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2016. http://dx.doi.org/10.1201/9781315372310-5.
Texto completo da fonteGashti, Mazeyar Parvinzadeh, Farbod Alimohammadi, Amir Kiumarsi, Wojciech Nogala, Zhun Xu, William J. Eldridge e Adam Wax. "Microscopy of Nanomaterials". In Nanocomposite Materials, 105–28. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2016. http://dx.doi.org/10.1201/9781315372310-6.
Texto completo da fonteShokoohi, Shirin, Ghasem Naderi e Aliasghar Davoodi. "Mechanical Properties of Nanomaterials". In Nanocomposite Materials, 129–45. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2016. http://dx.doi.org/10.1201/9781315372310-7.
Texto completo da fonteNasirpouri, Farzad. "Electrodeposited Nanocomposite Films". In Electrodeposition of Nanostructured Materials, 289–310. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-44920-3_7.
Texto completo da fonteSalam, Haipan, e Yu Dong. "The Effects of Material Formulation and Manufacturing Process on Mechanical and Thermal Properties of Conventional Epoxy/Clay Nanocomposites". In Bioepoxy/Clay Nanocomposites, 97–112. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-7297-2_3.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Formulation of Nanocomposite Materials"
Advincula, Rigoberto C. "Superhydrophobic and Nanostructured HPHT Stable Polybenzoxazine Nanocomposite Coatings for Oil and Gas". In CORROSION 2019, 1–7. NACE International, 2019. https://doi.org/10.5006/c2019-13524.
Texto completo da fonteLEPADATU, Daniel, Loredana JUDELE, Ioana ENTUC, Eduard PROASPAT e Gabriel SANDULACHE. "NANOPARTICLES AND RECYCLABLE WASTE IN CONSTRUCTION MATERIALS. FROM PRACTICAL NECESSITY TO ADVANCED SOLUTIONS". In SGEM International Multidisciplinary Scientific GeoConference, 231–38. STEF92 Technology, 2024. https://doi.org/10.5593/sgem2024v/6.2/s25.29.
Texto completo da fonteTian, Zhiting, Sang Kim, Ying Sun e Bruce White. "A Molecular Dynamics Study of Thermal Conductivity in Nanocomposites via the Phonon Wave Packet Method". In ASME 2009 InterPACK Conference collocated with the ASME 2009 Summer Heat Transfer Conference and the ASME 2009 3rd International Conference on Energy Sustainability. ASMEDC, 2009. http://dx.doi.org/10.1115/interpack2009-89272.
Texto completo da fonteTallman, T. N. "Strain Estimation From Conductivity Changes in Piezoresistive Nanocomposites". In ASME 2016 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/smasis2016-9012.
Texto completo da fonteTalamadupula, Krishna Kiran, e Gary D. Seidel. "Multiscale Modeling of Effective Piezoresistivity and Implementation of Non-Local Damage Formulation in Nanocomposite Bonded Explosives". In 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2018. http://dx.doi.org/10.2514/6.2018-0903.
Texto completo da fonteZhao, Dongfang, Jacob Meves, Anirban Mondal, Mrinal C. Saha e Yingtao Liu. "Additive Manufacturing of Embedded Strain Sensors in Structural Composites". In ASME 2022 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/imece2022-94366.
Texto completo da fonteLuo, Wenyuan, Yingtao Liu, Mrinal Saha, Steven Patterson e Thomas Robison. "Fabrication, Optimization, and Characterization of PDMS/CNF Nanocomposite Sensor Arrays". In ASME 2018 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/imece2018-86269.
Texto completo da fonteUttley, Katherine, Anika Galvan, Matthew Nakatsuka e Marco Basile. "High Temperature Compatible, Field-Deployable Heat Exchanger Nanocomposite Treatments". In Offshore Technology Conference. OTC, 2024. http://dx.doi.org/10.4043/35384-ms.
Texto completo da fonteBayar, Selen, Feridun Delale, Benjamin Liaw, Jackie Ji Li, Jerry Chung, Matthew Dabrowski e Ramki Iyer. "An In-Depth Study on the Mechanical and Thermal Properties of Nanoclay Reinforced Polymers at Various Temperatures". In ASME 2010 International Mechanical Engineering Congress and Exposition. ASMEDC, 2010. http://dx.doi.org/10.1115/imece2010-37341.
Texto completo da fonteHernandez, J. A., H. Zhu, F. Semperlotti e T. N. Tallman. "The Transient Response of Piezoresistive CNF-Modified Epoxy Rods to One-Dimensional Wave Packet Excitation". In ASME 2021 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/smasis2021-67801.
Texto completo da fonteRelatórios de organizações sobre o assunto "Formulation of Nanocomposite Materials"
Roy, R., e S. Komarneni. Multifunctional nanocomposite materials. Office of Scientific and Technical Information (OSTI), novembro de 1991. http://dx.doi.org/10.2172/6977177.
Texto completo da fonteHunt, A. J., M. Ayers e W. Cao. Aerogel nanocomposite materials. Office of Scientific and Technical Information (OSTI), maio de 1995. http://dx.doi.org/10.2172/105119.
Texto completo da fonteRoy, R., e S. Komarneni. Multifunctional nanocomposite materials. Progress report. Office of Scientific and Technical Information (OSTI), novembro de 1991. http://dx.doi.org/10.2172/10187528.
Texto completo da fonteStormont, John. Wellbore Seal Repair Using Nanocomposite Materials. Office of Scientific and Technical Information (OSTI), agosto de 2016. http://dx.doi.org/10.2172/1337552.
Texto completo da fonteCollins, Eric, Michelle Pantoya, Andreas A. Neuber, Michael Daniels e Daniel Prentice. Piezoelectric Ignition of Nanocomposite Energetic Materials. Fort Belvoir, VA: Defense Technical Information Center, janeiro de 2013. http://dx.doi.org/10.21236/ada597296.
Texto completo da fontePotter, Jr, e Barrett G. Optoelectronic Nanocomposite Materials for Thin Film Photovoltaics. Fort Belvoir, VA: Defense Technical Information Center, junho de 2012. http://dx.doi.org/10.21236/ada562250.
Texto completo da fonteKrishnan, Sitaraman, John McLaughlin e Dipankar Roy. Novel Nanocomposite Materials for Solar Cell Fabrication. Fort Belvoir, VA: Defense Technical Information Center, janeiro de 2012. http://dx.doi.org/10.21236/ada570684.
Texto completo da fontePantoya, Michelle L. Combustion and Ignition Studies of Nanocomposite Energetic Materials. Fort Belvoir, VA: Defense Technical Information Center, dezembro de 2010. http://dx.doi.org/10.21236/ada545482.
Texto completo da fonteHash, M. C., V. N. Zyryanov, J. K. Basco e D. B. Chamberlain. Fissile Materials Disposition Formulation Report. Office of Scientific and Technical Information (OSTI), junho de 1999. http://dx.doi.org/10.2172/802089.
Texto completo da fonteHaglund, Jr., Richard F. Linear and Nonlinear Optical Properties of Metal Nanocomposite Materials. Office of Scientific and Technical Information (OSTI), novembro de 2018. http://dx.doi.org/10.2172/1481179.
Texto completo da fonte