Artigos de revistas sobre o tema "Fracture mechanics"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Fracture mechanics".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Zhang, Ying, Kai He, Jianming Yang, et al. "Mechanical, Seepage, and Energy Evolution Properties of Multi-Shaped Fractured Sandstone Under Hydro-Mechanical Coupling: An Experimental Study." Minerals 15, no. 3 (2025): 215. https://doi.org/10.3390/min15030215.
Texto completo da fonteZhang, Hai Yong, Shun Li He, Guo Hua Luan, et al. "Influence of Fracture Parameters on the Productivity of Fractured Horizontal Well Based on Fluid Mechanics in Tight Gas Reservoir." Advanced Materials Research 886 (January 2014): 452–55. http://dx.doi.org/10.4028/www.scientific.net/amr.886.452.
Texto completo da fonteShi, Di, Liping Li, Jianjun Liu, Mingyang Wu, Yishan Pan, and Jupeng Tang. "Effect of discrete fractures with or without roughness on seepage characteristics of fractured rocks." Physics of Fluids 34, no. 7 (2022): 073611. http://dx.doi.org/10.1063/5.0097025.
Texto completo da fonteLiu, Chao, Xinggui Yang, Wenqi Cao, Jin Lin, Yuxuan Liu, and Hang Zhang. "Discrimination Model of Interaction Between Hydraulic Fracture and Natural Fracture Based on Energy Balance." Processes 13, no. 6 (2025): 1652. https://doi.org/10.3390/pr13061652.
Texto completo da fonteVanCourt, RB, SE Byron, SJ Ali, and BD Caldwell. "Fracture mechanics. A comparison study of torsional stress on bone." Journal of the American Podiatric Medical Association 90, no. 4 (2000): 167–74. http://dx.doi.org/10.7547/87507315-90-4-167.
Texto completo da fonteYuan, Yingzhong, Wende Yan, Fengbo Chen, Jiqiang Li, Qianhua Xiao, and Xiaoliang Huang. "Numerical Simulation for Shale Gas Flow in Complex Fracture System of Fractured Horizontal Well." International Journal of Nonlinear Sciences and Numerical Simulation 19, no. 3-4 (2018): 367–77. http://dx.doi.org/10.1515/ijnsns-2017-0135.
Texto completo da fonteWang, Yonggang, Xuejuan Zhang, Jie Zhang, et al. "Comparative Study on Artificial Fracture Modeling Schemes in Tight Reservoirs—For Enhancing the Production Efficiency of Tight Oil and Gas." Energies 17, no. 20 (2024): 5235. http://dx.doi.org/10.3390/en17205235.
Texto completo da fonteKubeyev, Amanzhol, Nathaniel Forbes Inskip, Tomos Phillips, et al. "Digital Image-Based Stress–Permeability Relationships of Rough Fractures Using Numerical Contact Mechanics and Stokes Equation." Transport in Porous Media 141, no. 2 (2022): 295–330. http://dx.doi.org/10.1007/s11242-021-01719-7.
Texto completo da fonteYu, Chaoyun, Bin Gong, Na Wu, Penglei Xu, and Xiankai Bao. "Simulation of the Fracturing Process of Inclusions Embedded in Rock Matrix under Compression." Applied Sciences 12, no. 16 (2022): 8041. http://dx.doi.org/10.3390/app12168041.
Texto completo da fonteAbass, Hazim Abass, Chris Lamei Lamei, Kaveh Amini Amini, and Tadesse Teklu Teklu. "Hydraulic Fracturing Tight Reservoirs: Rock Mechanics and Transport Phenomena." Journal of Petroleum Research and Studies 8, no. 2 (2021): 122–43. http://dx.doi.org/10.52716/jprs.v8i2.239.
Texto completo da fonteChen, Peng, Shuhan Yang, Xinyu Chen, Zeyu Li, Chuanbo Shen, and Huaning Qiu. "Multiscale Characterization of Fractures and Analysis of Key Controlling Factors for Fracture Development in Tight Sandstone Reservoirs of the Yanchang Formation, SW Ordos Basin, China." Applied Sciences 14, no. 21 (2024): 9676. http://dx.doi.org/10.3390/app14219676.
Texto completo da fonteMcClure, Mark W., Mohsen Babazadeh, Sogo Shiozawa, and Jian Huang. "Fully Coupled Hydromechanical Simulation of Hydraulic Fracturing in 3D Discrete-Fracture Networks." SPE Journal 21, no. 04 (2016): 1302–20. http://dx.doi.org/10.2118/173354-pa.
Texto completo da fonteMelvin, J. W. "Fracture Mechanics of Bone." Journal of Biomechanical Engineering 115, no. 4B (1993): 549–54. http://dx.doi.org/10.1115/1.2895538.
Texto completo da fonteWang, Wenhai, Yang Zhao, Lishuai Jiang, Jiacheng Zuo, Guangsheng Liu, and Hani S. Mitri. "Preliminary Study on Size Effect of Fractured Rock Mass with Sand Powder 3D Printing." Processes 10, no. 10 (2022): 1974. http://dx.doi.org/10.3390/pr10101974.
Texto completo da fonteLiu, Yang, Ping Chen, Bisheng Wu, et al. "Mechanics of Hydraulic-Fracture Growth from a Wellbore Intersecting Natural Fractures." SPE Journal 25, no. 02 (2019): 646–61. http://dx.doi.org/10.2118/198890-pa.
Texto completo da fonteRice, J. R. "Fracture Mechanics." Applied Mechanics Reviews 38, no. 10 (1985): 1271–75. http://dx.doi.org/10.1115/1.3143689.
Texto completo da fonteErdogan, F. "Fracture mechanics." International Journal of Solids and Structures 37, no. 1-2 (2000): 171–83. http://dx.doi.org/10.1016/s0020-7683(99)00086-4.
Texto completo da fonteAliabadi, M. "Fracture mechanics." Engineering Analysis with Boundary Elements 6, no. 2 (1989): 114. http://dx.doi.org/10.1016/0955-7997(89)90009-x.
Texto completo da fonteParker, A. P. "Fracture mechanics." Journal of Mechanical Working Technology 18, no. 1 (1989): 123. http://dx.doi.org/10.1016/0378-3804(89)90115-0.
Texto completo da fonteOHJI, Kiyotsugu. "Fracture Mechanics." Journal of the Society of Mechanical Engineers 90, no. 823 (1987): 706–7. http://dx.doi.org/10.1299/jsmemag.90.823_706.
Texto completo da fonteFerri Aliabadi, M. H. "Fracture mechanics." Engineering Analysis with Boundary Elements 20, no. 3 (1997): 269–71. http://dx.doi.org/10.1016/s0955-7997(97)00053-2.
Texto completo da fonteSakamoto, Haruo. "Fracture Mechanics in Design Guidance and Practice." Key Engineering Materials 353-358 (September 2007): 182–85. http://dx.doi.org/10.4028/www.scientific.net/kem.353-358.182.
Texto completo da fonteZeng, Qingdong, Taixu Li, Long Bo, Xuelong Li, and Jun Yao. "Comprehensive Investigation of Factors Affecting Acid Fracture Propagation with Natural Fracture." Energies 17, no. 21 (2024): 5386. http://dx.doi.org/10.3390/en17215386.
Texto completo da fonteXu, Qianghui, Xiongyu Chen, Junyu Yang, Zhiying Liu, and Lin Shi. "Pore-scale study of coke combustion in a matrix-fracture system based on the micro-continuum approach." Physics of Fluids 34, no. 3 (2022): 036603. http://dx.doi.org/10.1063/5.0082518.
Texto completo da fonteWu, Kan, and Jon E. Olson. "Simultaneous Multifracture Treatments: Fully Coupled Fluid Flow and Fracture Mechanics for Horizontal Wells." SPE Journal 20, no. 02 (2014): 337–46. http://dx.doi.org/10.2118/167626-pa.
Texto completo da fonteGong, Diguang, Junbin Chen, Cheng Cheng, Yuanyuan Kou, Haiyan Jiang, and Jianhong Zhu. "Numerical Simulation on Radial Well Deflagration Fracturing Based on Phase Field Method." Energies 16, no. 12 (2023): 4758. http://dx.doi.org/10.3390/en16124758.
Texto completo da fonteDubey, Prashant K., Sushil Kumar, Khushboo Havelia, and Savitri Yadav. "Integrated deterministic and predictive discrete fracture network modeling for an Eocene carbonate reservoir, Bengal Basin, India." Leading Edge 38, no. 4 (2019): 274–79. http://dx.doi.org/10.1190/tle38040274.1.
Texto completo da fonteBart, M., J. F. Shao, D. Lydzba, and M. Haji-Sotoudeh. "Coupled hydromechanical modeling of rock fractures under normal stress." Canadian Geotechnical Journal 41, no. 4 (2004): 686–97. http://dx.doi.org/10.1139/t04-018.
Texto completo da fonteZhao, Xueping, and R. Paul Young. "Numerical modeling of seismicity induced by fluid injection in naturally fractured reservoirs." GEOPHYSICS 76, no. 6 (2011): WC167—WC180. http://dx.doi.org/10.1190/geo2011-0025.1.
Texto completo da fonteMen, Xiaoxi, and Jiren Li. "Numerical Investigation of Fracture Network Formation under Multiple Wells." Mathematical Problems in Engineering 2020 (August 20, 2020): 1–11. http://dx.doi.org/10.1155/2020/1763713.
Texto completo da fonteFAN, L. F., X. W. YI, and G. W. MA. "NUMERICAL MANIFOLD METHOD (NMM) SIMULATION OF STRESS WAVE PROPAGATION THROUGH FRACTURED ROCK MASS." International Journal of Applied Mechanics 05, no. 02 (2013): 1350022. http://dx.doi.org/10.1142/s1758825113500221.
Texto completo da fonteLi, Xin, Xiang Li, Dongxiao Zhang, and Rongze Yu. "A Dual-Grid, Implicit, and Sequentially Coupled Geomechanics-and-Composition Model for Fractured Reservoir Simulation." SPE Journal 25, no. 04 (2020): 2098–118. http://dx.doi.org/10.2118/201210-pa.
Texto completo da fonteLiu, Hong, Lin Wang, Yu Wu Zhou, and Xi Nan Yu. "A Mathematical Model for Natural Fracture Evolution in Water-Flooding Oil Reservoir." Advanced Materials Research 868 (December 2013): 535–41. http://dx.doi.org/10.4028/www.scientific.net/amr.868.535.
Texto completo da fonteMehrabian, Amin. "The Stability of Inclined and Fractured Wellbores." SPE Journal 21, no. 05 (2016): 1518–36. http://dx.doi.org/10.2118/180910-pa.
Texto completo da fonteLiu, Xue-wei, Quan-sheng Liu, Shi-bing Huang, Lai Wei, and Guang-feng Lei. "Fracture Propagation Characteristic and Micromechanism of Rock-Like Specimens under Uniaxial and Biaxial Compression." Shock and Vibration 2016 (2016): 1–11. http://dx.doi.org/10.1155/2016/6018291.
Texto completo da fonteAtluri, S. N., M. H. Aliabadi, and D. P. Rooke. "Numerical Fracture Mechanics." Mathematics of Computation 63, no. 208 (1994): 825. http://dx.doi.org/10.2307/2153308.
Texto completo da fonteSih, G. C., L. Faria, and C. H. Popelar. "Fracture Mechanics Methodology." Journal of Applied Mechanics 52, no. 2 (1985): 500. http://dx.doi.org/10.1115/1.3169086.
Texto completo da fonteKanninen, Melvin F., Carl H. Popelar, and A. J. McEvily. "Advanced Fracture Mechanics." Journal of Engineering Materials and Technology 108, no. 2 (1986): 199. http://dx.doi.org/10.1115/1.3225862.
Texto completo da fonteLewandowski, John J. "Modern fracture mechanics." Philosophical Magazine 93, no. 28-30 (2013): 3893–906. http://dx.doi.org/10.1080/14786435.2013.812811.
Texto completo da fonteKanninen, M. F., C. A. Popelar, and H. Saunders. "Advanced Fracture Mechanics." Journal of Vibration and Acoustics 110, no. 3 (1988): 419–20. http://dx.doi.org/10.1115/1.3269540.
Texto completo da fonteNewman, J. C., and Uwe Zerbst. "Engineering Fracture Mechanics." Engineering Fracture Mechanics 70, no. 3-4 (2003): 367–69. http://dx.doi.org/10.1016/s0013-7944(02)00124-8.
Texto completo da fonteFreund, L. B., and John W. Hutchinson. "Dynamic Fracture Mechanics." Journal of Applied Mechanics 59, no. 1 (1992): 245. http://dx.doi.org/10.1115/1.2899458.
Texto completo da fontePugno †, Nicola M., and Rodney S. Ruoff ‡. "Quantized fracture mechanics." Philosophical Magazine 84, no. 27 (2004): 2829–45. http://dx.doi.org/10.1080/14786430412331280382.
Texto completo da fonteSollberger, J. B. "Hinge Fracture Mechanics." Lithic Technology 19, no. 1 (1994): 17–20. http://dx.doi.org/10.1080/01977261.1994.11720903.
Texto completo da fonteCherepanov, G. P. "Quantum fracture mechanics." Strength of Materials 22, no. 2 (1990): 155–63. http://dx.doi.org/10.1007/bf00773232.
Texto completo da fonteAliabadi, M. H. "Dynamic fracture mechanics." Engineering Analysis with Boundary Elements 9, no. 3 (1992): 279–80. http://dx.doi.org/10.1016/0955-7997(92)90111-j.
Texto completo da fonteDelima-Silva, W. "Engineering fracture mechanics." Engineering Analysis with Boundary Elements 9, no. 1 (1992): 106–7. http://dx.doi.org/10.1016/0955-7997(92)90135-t.
Texto completo da fonteDeighton, M. "Fracture mechanics methodology." Materials & Design 6, no. 2 (1985): 95. http://dx.doi.org/10.1016/0261-3069(85)90171-2.
Texto completo da fonteAltiero, N. J. "Advanced fracture mechanics." Materials Science and Engineering 94 (October 1987): 268. http://dx.doi.org/10.1016/0025-5416(87)90344-2.
Texto completo da fonteMielke, Steven L., Ted Belytschko, and George C. Schatz. "Nanoscale Fracture Mechanics." Annual Review of Physical Chemistry 58, no. 1 (2007): 185–209. http://dx.doi.org/10.1146/annurev.physchem.58.032806.104502.
Texto completo da fonte