Siga este link para ver outros tipos de publicações sobre o tema: Frequency stability.

Artigos de revistas sobre o tema "Frequency stability"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Frequency stability".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

Percival, D. B. "Characterization of frequency stability: frequency-domain estimation of stability measures." Proceedings of the IEEE 79, no. 7 (1991): 961–72. http://dx.doi.org/10.1109/5.84973.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Chen, Chaoyong, Chunqing Gao, Huixing Dai, and Qing Wang. "Single-frequency Er:YAG ceramic pulsed laser with frequency stability close to 100 kHz." Chinese Optics Letters 20, no. 4 (2022): 041402. http://dx.doi.org/10.3788/col202220.041402.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Walls, F. L., and D. W. Allan. "Measurements of frequency stability." Proceedings of the IEEE 74, no. 1 (1986): 162–68. http://dx.doi.org/10.1109/proc.1986.13429.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Jaffe, S. M., M. Rochon, and W. M. Yen. "Increasing the frequency stability of single‐frequency lasers." Review of Scientific Instruments 64, no. 9 (1993): 2475–81. http://dx.doi.org/10.1063/1.1143906.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Rutman, J., and F. L. Walls. "Characterization of frequency stability in precision frequency sources." Proceedings of the IEEE 79, no. 7 (1991): 952–60. http://dx.doi.org/10.1109/5.84972.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Rongcheng Li, Xiaming Liang, Ziyuan Jin, Liming Li, and Yongshi Xia. "NIM frequency stability measurement system." IEEE Transactions on Instrumentation and Measurement 38, no. 2 (1989): 537–40. http://dx.doi.org/10.1109/19.192341.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Litwin, C. "Fluctuations and low‐frequency stability." Physics of Fluids B: Plasma Physics 3, no. 8 (1991): 2170–73. http://dx.doi.org/10.1063/1.859631.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Jefferies, S. M., P. L. Pallé, H. B. van der Raay, C. Régulo, and T. Roca Cortés. "Frequency stability of solar oscillations." Nature 333, no. 6174 (1988): 646–49. http://dx.doi.org/10.1038/333646a0.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Matsko, A. B., A. A. Savchenkov, V. S. Ilchenko, D. Seidel, and L. Maleki. "Optical-RF frequency stability transformer." Optics Letters 36, no. 23 (2011): 4527. http://dx.doi.org/10.1364/ol.36.004527.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Gelfer, Marylou Pausewang. "Stability in phonational frequency range." Journal of Communication Disorders 22, no. 3 (1989): 181–92. http://dx.doi.org/10.1016/0021-9924(89)90015-4.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Yang, Ke, and Wen Sun. "Frequency Stability Assessment of Power System Using Frequency Stability Indices and Artificial Neural Newwork." IOP Conference Series: Earth and Environmental Science 514 (July 3, 2020): 042057. http://dx.doi.org/10.1088/1755-1315/514/4/042057.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Muhammad, Usman, and Zhuang Shengxian. "Improving Electric-Grid Frequency Stability: An In-depth Examination Windmills-partaking in-Frequency stability." International Multidisciplinary Journal of Science, Technology and Business Volume 03, Issue 02 (2024): 25–42. https://doi.org/10.5281/zenodo.13325640.

Texto completo da fonte
Resumo:
<em>As wind energy gains prominence as a significant power source, the capacity of the (windmills) Doubly-fed Induction Generator (DFIG) to respond to load variations in the power grid is restricted by decoupled active power control, posing a noteworthy concern. This study delves into the windmill's (DFIG) capabilities in aiding frequency regulation (FR). We explore mathematical relationships between the rate of wind energy incorporation, windmills regulation capabilities, frequency modulation (FM), and wind energy efficiency. This paper introduces innovative control strategies that enhance th
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

INABA, Hajime, Sho OKUBO, and Masato WADA. "Frequency Stability Improvements and Evaluations of Optical Frequency Comb." Review of Laser Engineering 46, no. 2 (2018): 61. http://dx.doi.org/10.2184/lsj.46.2_61.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Nguyen, N. M., and R. G. Meyer. "Start-up and frequency stability in high-frequency oscillators." IEEE Journal of Solid-State Circuits 27, no. 5 (1992): 810–20. http://dx.doi.org/10.1109/4.133172.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Kalivas, G. A., and R. G. Harrison. "Characterization of the frequency stability of frequency-hopping sources." IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control 38, no. 5 (1991): 429–35. http://dx.doi.org/10.1109/58.84287.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Muhammad, Nizam Kamarudin, Shaharudin Nabilah, Haqkimi Abd Rahman Noor, Hendra Hairi Mohd, Md. Rozali Sahazati, and Sutikno Tole. "Review on load frequency control for power system stability." TELKOMNIKA Telecommunication, Computing, Electronics and Control 19, no. 2 (2021): pp. 638~644. https://doi.org/10.12928/TELKOMNIKA.v19i2.16118.

Texto completo da fonte
Resumo:
Power system stability is the capability of power systems to maintain load magnitude within specified limits under steady state conditions in electrical power transmission. In modern days, the electrical power systems have grown in terms of complexity due to increasing interconnected power line exchange. For that, an inherent of controllers were essential to correct the deviation in the presence of external disturbances. This paper hence aims to review the basic concepts of power system stability in load frequency control. Various control techniques were analyzed and presented. Power system st
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Benriwati, Maharmi, Cholid Ilham, Syafii, and Harda Arya Engla. "Optimization of speed droop governor operation at the gas turbine cogeneration unit." Indonesian Journal of Electrical Engineering and Computer Science 33, no. 1 (2024): 20~30. https://doi.org/10.11591/ijeecs.v33.i1.pp20-30.

Texto completo da fonte
Resumo:
Variations in customer demand for active power can impact frequency levels, potentially leading to instability within the electrical power system. To uphold system stability, it becomes essential to control the provision of active power to ensure the frequency remains consistent. This research aims to develop a simulation model for optimizing of the operation of the speed droop governor at the gas turbine cogeneration unit. This research used the quantitative method and descriptive statistical analysis techniques. The simulation model was employed as a simulator for operating the speed droop g
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

He, Yingjing, Shuyi Shen, Yangqing Dan, et al. "Voltage stability and frequency stability analysis of Zhejiang power grid." IET Conference Proceedings 2024, no. 6 (2025): 628–33. https://doi.org/10.1049/icp.2024.2349.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Urban, Rudez, Sodin Denis, and Mihalic Rafael. "Estimating frequency stability margin for flexible under-frequency relay operation." Electric Power Systems Research 194 (May 2021): 107116. http://dx.doi.org/10.1016/j.epsr.2021.107116.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Marinelli, Mattia, Kristian Sevdari, Lisa Calearo, Andreas Thingvad, and Charalampos Ziras. "Frequency stability with converter-connected resources delivering fast frequency control." Electric Power Systems Research 200 (November 2021): 107473. http://dx.doi.org/10.1016/j.epsr.2021.107473.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Cao, Liyu, Kazutaka Segawa, Akira Nabae, and Kazuo Ohnishi. "Mid-Frequency Oscillation and High Frequency Stability in Stepping Motors." IEEJ Transactions on Industry Applications 117, no. 9 (1997): 1146–53. http://dx.doi.org/10.1541/ieejias.117.1146.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Ferreiro, Teresa I., Jinghua Sun, and Derryck T. Reid. "Frequency stability of a femtosecond optical parametric oscillator frequency comb." Optics Express 19, no. 24 (2011): 24159. http://dx.doi.org/10.1364/oe.19.024159.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Candelier, V., V. Giordano, A. Hamel, G. Th�obald, P. C�rez, and C. Audoin. "Frequency stability of an optically pumped cesium beam frequency standard." Applied Physics B Photophysics and Laser Chemistry 49, no. 4 (1989): 365–70. http://dx.doi.org/10.1007/bf00324187.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Cappelli, Francesco, Giulio Campo, Iacopo Galli, et al. "Frequency stability characterization of a quantum cascade laser frequency comb." Laser & Photonics Reviews 10, no. 4 (2016): 623–30. http://dx.doi.org/10.1002/lpor.201600003.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

An, Byeong-Hyeon, Jae-Deok Park, Jun-Soo Che, Tae-Hun Kim, and Tae-Sik Park. "Research on Improving Grid Frequency Stability Using Variable Frequency Transformer." Journal of the Korean Institute of Illuminating and Electrical Installation Engineers 38, no. 1 (2024): 40–48. http://dx.doi.org/10.5207/jieie.2024.38.1.40.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

Kotby, M. N., I. R. Titze, M. M. Saleh, and D. A. Berry. "Fundamental Frequency Stability in Functional Dysphonia." Acta Oto-Laryngologica 113, no. 3 (1993): 439–44. http://dx.doi.org/10.3109/00016489309135841.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Lodewyck, Jérôme, Philip G. Westergaard, Arnaud Lecallier, Luca Lorini, and Pierre Lemonde. "Frequency stability of optical lattice clocks." New Journal of Physics 13, no. 5 (2011): 059501. http://dx.doi.org/10.1088/1367-2630/13/5/059501.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

Brida, G. "High resolution frequency stability measurement system." Review of Scientific Instruments 73, no. 5 (2002): 2171–74. http://dx.doi.org/10.1063/1.1464654.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Rebeiz, G. M., and L. D. DiDomenico. "Frequency stability in adaptive retrodirective arrays." IEEE Transactions on Aerospace and Electronic Systems 36, no. 4 (2000): 1219–31. http://dx.doi.org/10.1109/7.892670.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Filicori, F., and G. Vannini. "Frequency stability in resonator-stabilized oscillators." IEEE Transactions on Circuits and Systems 37, no. 11 (1990): 1440–44. http://dx.doi.org/10.1109/31.62420.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Walls, F. L., and D. W. Allan. "Correction to "Measurements of frequency stability"." Proceedings of the IEEE 74, no. 8 (1986): 1166. http://dx.doi.org/10.1109/proc.1986.13603.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Repasky, K. S., J. G. Wessel, and J. L. Carlsten. "Frequency stability of high-finesse interferometers." Applied Optics 35, no. 4 (1996): 609. http://dx.doi.org/10.1364/ao.35.000609.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Wong, H. Vernon, W. Horton, J. W. Van Dam, and C. Crabtree. "Low frequency stability of geotail plasma." Physics of Plasmas 8, no. 5 (2001): 2415–24. http://dx.doi.org/10.1063/1.1357828.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Savilov, A. V., and G. S. Nusinovich. "Stability of frequency-multiplying harmonic gyroklystrons." Physics of Plasmas 15, no. 1 (2008): 013112. http://dx.doi.org/10.1063/1.2832681.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Lodewyck, Jérôme, Philip G. Westergaard, Arnaud Lecallier, Luca Lorini, and Pierre Lemonde. "Frequency stability of optical lattice clocks." New Journal of Physics 12, no. 6 (2010): 065026. http://dx.doi.org/10.1088/1367-2630/12/6/065026.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

Sadegh, Biabanifard, Mehdi Hosseini Largani S., and Asadi Shahrouz. "COMBINED SKEWED CMOS RING OSCILLATOR." Electrical & Computer Engineering: An International Journal (ECIJ) 4, no. 2 (2015): 01–14. https://doi.org/10.5281/zenodo.3532648.

Texto completo da fonte
Resumo:
A combined skewed ring oscillator by different type of delay stages is presented. This paper aims to drive a high stable and relatively high frequency but still use a full transistor circuit for ring oscillator with combined delay stages and skewed connections. First we propose two types of common inverters then calculate their delay time and analysis their dependence of delay time to variation of power supply voltage. The simulation results verify that delay time of these two CMOS inverters show opposite behaviour versus power supply changing. So a combined structure can obtain more appropria
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

Yoo, Jae Ik, Yong Cheol Kang, Eduard Muljadi, Kyu-Ho Kim, and Jung-Wook Park. "Frequency Stability Support of a DFIG to Improve the Settling Frequency." IEEE Access 8 (2020): 22473–82. http://dx.doi.org/10.1109/access.2020.2969051.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

Xie, Yuzheng, Changgang Li, Hengxu Zhang, Huadong Sun, and Vladimir Terzija. "Long-Term Frequency Stability Assessment Based on Extended Frequency Response Model." IEEE Access 8 (2020): 122444–55. http://dx.doi.org/10.1109/access.2020.3006239.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Browning, J. J., N. Hershkowitz, T. Intrator, R. Majeski, and S. Meassick. "Radio‐frequency wave interchange stability experiments below the ion cyclotron frequency." Physics of Fluids B: Plasma Physics 1, no. 8 (1989): 1692–701. http://dx.doi.org/10.1063/1.858948.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Terra, Osama. "Characterization of the Frequency Stability of a Multibranch Optical Frequency Comb." IEEE Transactions on Instrumentation and Measurement 69, no. 10 (2020): 7773–80. http://dx.doi.org/10.1109/tim.2020.2986422.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

Yang, Hong-Yu, Shu-Xi Gong, Peng-Fei Zhang, Feng-Tao Zha, and Jin Ling. "A novel miniaturized frequency selective surface with excellent center frequency stability." Microwave and Optical Technology Letters 51, no. 10 (2009): 2513–16. http://dx.doi.org/10.1002/mop.24604.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

Yuri, Petrakov, and Danylchenko Mariia. "A time-frequency approach to ensuring stability of machining by turning." Eastern-European Journal of Enterprise Technologies 6, no. 2 (120) (2022): 85–92. https://doi.org/10.15587/1729-4061.2022.268637.

Texto completo da fonte
Resumo:
This paper reports a new approach to ensuring the stability of the turning process, which is based on the frequency-time characteristics of the technological machining system (TMS). The approach uses a mathematical model of the turning process as a single-mass system with one degree of freedom, taking into account negative feedback on the normal coordinate and positive feedback with a delay in cutting depth. A new criterion for the stability of the cutting process as a system with a delay in positive feedback is proposed, based on the analysis of frequency characteristics in the form of a Nyqu
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

HE Ziyang, AN Bingnan, WANG Tao, et al. "High-stability dual-frequency laser based on dual acousto-optic modulation." Acta Physica Sinica 74, no. 9 (2025): 0. https://doi.org/10.7498/aps.74.20250067.

Texto completo da fonte
Resumo:
A high-stability dual-frequency laser source is a key technology for achieving national ultra-precision measurement capabilities and also serves as the foundation for supporting the quality of high-end equipment manufacturing. This paper builds a high-stability dual-frequency laser source and its frequency difference stability evaluation system based on a double acousto-optic modulation scheme. By researching the mechanism of generating dual-frequency laser based on double acousto-optic modulation, a degradation model of frequency difference stability was gradually constructed, with targeted t
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

Khristenko, A. "A SIMPLE METHOD FOR IMPROVING OUT-OF-BAND HIGH-FREQUENCY STABILITY OF RADIO FREQUENCY AMPLIFIERS." RADIO PHYSICS AND RADIO ASTRONOMY 28, no. 4 (2023): 318–28. http://dx.doi.org/10.15407/rpra28.04.318.

Texto completo da fonte
Resumo:
Subject and Purpose. Methods for determining and ensuring the stability of radio frequency (RF) amplifiers have been progressing quite actively over the past decades. However, most of them are not convenient for practical use. Combining analytical and graphical techniques widely accepted at the moment requires a highly skillful user and licensed software. Also, a bad point is the lack of clear algorithms for increasing the out-of-band high-frequency stability of amplifiers, sending us to the procedure of successive approx- imations when an optimal solution for an individual scheme is sought. T
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

Pérez-Illanes, Felipe, Eduardo Álvarez-Miranda, Claudia Rahmann, and Camilo Campos-Valdés. "Robust Unit Commitment Including Frequency Stability Constraints." Energies 9, no. 11 (2016): 957. http://dx.doi.org/10.3390/en9110957.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

Zhang Yin, 张胤, and 王青 Wang Qing. "Research of Automatic Frequency Stability Diode Laser." Chinese Journal of Lasers 41, no. 6 (2014): 0602001. http://dx.doi.org/10.3788/cjl201441.0602001b.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

Lu, Lan, Yongxing Che, Shouzhu Tang, Zhihao Xu, and Hongchao Wu. "A Large Angle Stability Frequency Selective Surface." Procedia Computer Science 187 (2021): 538–41. http://dx.doi.org/10.1016/j.procs.2021.04.096.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

Hojo, Hitoshi. "Low-Frequency Stability of Mirror Confined Plasmas." Kakuyūgō kenkyū 65, no. 6 (1991): 639–57. http://dx.doi.org/10.1585/jspf1958.65.639.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

Tseng, Yu-Chuan, Chin-Yun Pan, Pao-Hsin Liu, Yi-Hsin Yang, Hong-Po Chang, and Chun-Ming Chen. "Resonance frequency analysis of miniscrew implant stability." Journal of Oral Science 60, no. 1 (2018): 64–69. http://dx.doi.org/10.2334/josnusd.16-0613.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

Hoang Suoc. "About the stability of frequency-independent networks." IEEE Transactions on Circuits and Systems 32, no. 9 (1985): 970–73. http://dx.doi.org/10.1109/tcs.1985.1085811.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!