Siga este link para ver outros tipos de publicações sobre o tema: Geochemistry.

Artigos de revistas sobre o tema "Geochemistry"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Geochemistry".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

Price, Jonathan G. "SEG Presidential Address: I Never Met a Rhyolite I Didn’t Like – Some of the Geology in Economic Geology." SEG Discovery, no. 57 (April 1, 2004): 1–13. http://dx.doi.org/10.5382/segnews.2004-57.fea.

Texto completo da fonte
Resumo:
ABSTRACT Rhyolites and their deep-seated chemical equivalents, granites, are some of the most interesting rocks. They provide good examples of why it is important to look carefully at fresh rocks in terms of fıeld relationships, mineralogy, petrography, petrology, geochemistry, and alteration processes. Because of their evolved geochemisty, they commonly are important in terms of ore-forming processes. They are almost certainly the source of metal in many beryllium and lithium deposits and the source of heat for many other hydrothermal systems. From other perspectives, rhyolitic volcanic erupt
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

DEMETRIADES, A. "Applied geochemistry in the twenty-first century: mineral exploration and environmental surveys." Bulletin of the Geological Society of Greece 34, no. 3 (2001): 1131. http://dx.doi.org/10.12681/bgsg.17173.

Texto completo da fonte
Resumo:
Applied (exploration and environmental) geochemistry in the twentieth century is briefly reviewed, and its future developments in the twenty-first century are envisaged in the light of advances in analytical instruments (laboratory and field) and computer technology. It is concluded that applied geochemical methods must be used by well-trained applied geochemists, and the potential for future developments is limited only by their ingenuity.
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

VAN SCHMUS, W. R. "Crustal Geochemistry: Archaean Geochemistry." Science 231, no. 4739 (1986): 751–52. http://dx.doi.org/10.1126/science.231.4739.751.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Hunt, John M. "Geochemistry." Geochimica et Cosmochimica Acta 53, no. 12 (1989): 3343. http://dx.doi.org/10.1016/0016-7037(89)90115-4.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Volkman, John K. "Future Outlook for Applications of Biomarkers and Isotopes in Organic Geochemistry." Elements 18, no. 2 (2022): 115–20. http://dx.doi.org/10.2138/gselements.18.2.115.

Texto completo da fonte
Resumo:
Organic geochemistry continues to make important contributions to our understanding of how the biogeochemistry of our planet and its environment has changed over time and of the role of human impacts today. This article provides a brief overview of the field and a perspective on how it might develop in the near future. Particular emphasis is placed on biomarkers (compounds with a distinctive chemical structure that can be related to specific organisms) and stable isotopes of carbon, hydrogen, and nitrogen, as these are major tools used by organic geochemists. Many geochemical studies involve a
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Canfield, Donald E. "Marine Geochemistry." Limnology and Oceanography 45, no. 7 (2000): 1680. http://dx.doi.org/10.4319/lo.2000.45.7.1680.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Hanson, B. "GEOCHEMISTRY: Selenospheres." Science 303, no. 5656 (2004): 289b—289. http://dx.doi.org/10.1126/science.303.5656.289b.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Till, Christy. "Big geochemistry." Nature 523, no. 7560 (2015): 293–94. http://dx.doi.org/10.1038/523293a.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

WILSON, ELIZABETH K. "MODELING GEOCHEMISTRY." Chemical & Engineering News 88, no. 14 (2010): 39–40. http://dx.doi.org/10.1021/cen-v088n014.p039.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Elderfield, H. "Marine Geochemistry." Marine and Petroleum Geology 17, no. 9 (2000): 1083–84. http://dx.doi.org/10.1016/s0264-8172(00)00036-2.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Fuge, Ron. "Environmental Geochemistry." Applied Geochemistry 17, no. 8 (2002): 959. http://dx.doi.org/10.1016/s0883-2927(02)00094-x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Wakefield, S. J. "Applied geochemistry." Continental Shelf Research 8, no. 1 (1988): 111. http://dx.doi.org/10.1016/0278-4343(88)90028-3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Parker, Andrew, and A. Mark Pollard. "Archaeological geochemistry." Applied Geochemistry 21, no. 10 (2006): 1625. http://dx.doi.org/10.1016/j.apgeochem.2006.07.001.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Wangersky, Peter J. "Marine geochemistry." Chemical Geology 90, no. 1-2 (1991): 170–71. http://dx.doi.org/10.1016/0009-2541(91)90043-q.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Rothwell, R. G. "Marine geochemistry." Marine and Petroleum Geology 8, no. 3 (1991): 374. http://dx.doi.org/10.1016/0264-8172(91)90096-j.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Gardner, Christopher B., David T. Long, and W. Berry Lyons. "Urban Geochemistry." Applied Geochemistry 83 (August 2017): 1–2. http://dx.doi.org/10.1016/j.apgeochem.2017.05.023.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

WINDLEY, B. "Archaean Geochemistry." Earth-Science Reviews 24, no. 1 (1987): 67. http://dx.doi.org/10.1016/0012-8252(87)90051-1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Hosking, K. F. G. "Applied geochemistry." Journal of Southeast Asian Earth Sciences 1, no. 2 (1986): 143–44. http://dx.doi.org/10.1016/0743-9547(86)90027-9.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Hirner, A. V., and P. Hahn-Weinheimer. "Organometallic Geochemistry." Chemical Geology 70, no. 1-2 (1988): 116. http://dx.doi.org/10.1016/0009-2541(88)90529-3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Hawkes, Herbert E. "Applied geochemistry." Geochimica et Cosmochimica Acta 50, no. 11 (1986): 2528. http://dx.doi.org/10.1016/0016-7037(86)90039-6.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Chaffee, Maurice A. "Drainage geochemistry." Journal of Geochemical Exploration 54, no. 2 (1995): 149–51. http://dx.doi.org/10.1016/0375-6742(95)90006-3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

SELINUS, O. "Handbook of exploration geochemistry, volume 6 drainage geochemistry." Applied Geochemistry 11, no. 3 (1996): 489–90. http://dx.doi.org/10.1016/s0883-2927(96)81806-3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Gong, Qingjie, and Zeming Shi. "Special Issue on New Advances and Illustrations in Applied Geochemistry in China." Applied Sciences 13, no. 14 (2023): 8220. http://dx.doi.org/10.3390/app13148220.

Texto completo da fonte
Resumo:
The 9th national conference on applied geochemistry in China will be held in Chengdu, Sichuan province, in October 2023, hosted by the committee of applied geochemistry, the Chinese Society for Mineralogy, Petrology and Geochemistry (CSMPG) [...]
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Shi, Long Qing, Dao Kun Ni, and Jian Guang Cheng. "The Study on Establishing the Baseline Mode of Coal Mine Area Soil Heavy Metal Pollution." Applied Mechanics and Materials 229-231 (November 2012): 2712–15. http://dx.doi.org/10.4028/www.scientific.net/amm.229-231.2712.

Texto completo da fonte
Resumo:
The earth's crust Cluck value, the shale abundance value, the sandstone abundance value and so on may become in the weight earth's crust in the different land sector and the rock type the element centralism dispersible standard, becomes the more general geochemistry reference baseline, but uses the above baseline the shortcoming not to consider the natural geochemistry change. When specific area, under the specific geological background conducts the environment geochemistry research, uses the above geochemistry reference baseline the limitation to be more obvious. On the contrary, the environm
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Britt, Allison F., Raymond E. Smith, and David J. Gray. "Element mobilities and the Australian regolith - a mineral exploration perspective." Marine and Freshwater Research 52, no. 1 (2001): 25. http://dx.doi.org/10.1071/mf00054.

Texto completo da fonte
Resumo:
Much of the Australian regolith ranges from Palaeogene to Late Cretaceous in age or even older, contrasting with the relatively young landscapes of the Northern Hemisphere. Hence, many imported geochemical exploration methods are unsuitable for Australian environments; this has led to successful homegrown innovation. Exploration geochemistry seeks to track geochemical anomalies arising from concealed ore deposits to their source. Much is known about element associations for different types of ore deposits and about observed patterns of dispersion. Element mobility in a range of Western Austral
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

Bispo-Silva, Sizenando, Cleverson J. Ferreira de Oliveira, and Gabriel de Alemar Barberes. "Geochemical Biodegraded Oil Classification Using a Machine Learning Approach." Geosciences 13, no. 11 (2023): 321. http://dx.doi.org/10.3390/geosciences13110321.

Texto completo da fonte
Resumo:
Chromatographic oil analysis is an important step for the identification of biodegraded petroleum via peak visualization and interpretation of phenomena that explain the oil geochemistry. However, analyses of chromatogram components by geochemists are comparative, visual, and consequently slow. This article aims to improve the chromatogram analysis process performed during geochemical interpretation by proposing the use of Convolutional Neural Networks (CNN), which are deep learning techniques widely used by big tech companies. Two hundred and twenty-one chromatographic oil images from differe
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Olshtynska, O. P. "TO THE 75TH ANNIVERSARY OF THE BIRTH OF OLEKSANDR MYKOLAYOVYCH PONOMARENKO." Geological Journal, no. 1 (March 31, 2025): 80–85. https://doi.org/10.30836/igs.1025-6814.2025.1.325118.

Texto completo da fonte
Resumo:
The article is dedicated to the significant milestones in the scientific career of the outstanding Ukrainian scientist, geologist-geochemist O.M. Ponomarenko. It highlights his path in science and his role in the development of isotope geochronology and isotope geochemistry in Ukraine; in geochronological studies aimed at reconstructing the early stages of the geological history of the Ukrainian Shield; as well as in the development and implementation of advanced technologies for processing and enriching oxidized iron ores. One of the significant achievements of O.M. Ponomarenko is the solutio
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

Italiano, Francesco, Andrzej Solecki, Giovanni Martinelli, Yunpeng Wang, and Guodong Zheng. "New Applications in Gas Geochemistry." Geofluids 2020 (July 2, 2020): 1–3. http://dx.doi.org/10.1155/2020/4976190.

Texto completo da fonte
Resumo:
Gases present in the Earth crust are important in various branches of human activities. Hydrocarbons are a significant energy resource, helium is applied in many high-tech instruments, and studies of crustal gas dynamics provide insight in the geodynamic processes and help monitor seismic and volcanic hazards. Quantitative analysis of methane and CO2 migration is important for climate change studies. Some of them are toxic (H2S, CO2, CO); radon is responsible for the major part of human radiation dose. The development of analytical techniques in gas geochemistry creates opportunities of applyi
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Vorontsov, A. A., M. I. Kuzmin, A. B. Perepelov, and V. S. Shatsky. "Modern Lines in Geochemistry: Anniversary Conference." Russian Geology and Geophysics 65, no. 3 (2024): 299–301. http://dx.doi.org/10.2113/rgg20234695.

Texto completo da fonte
Resumo:
Abstract —On 21–25 November, 2022, Vinogradov Institute of Geochemistry, Siberian Branch of the Russian Academy of Sciences (Irkutsk), organized and held an All-Russian conference celebrating the 65th anniversary since the foundation of the Institute and the 105th anniversary since the birth of its first director, Academician Lev Vladimirovich Tauson, who headed the Institute from 1961 to 1989. The results reported at the conference encompass a wide range of research fields in modern geochemistry, including isotope geochemistry of igneous, metamorphic, and sedimentary rocks in various geodynam
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Fehrenbacher, Jennifer S., Brittany N. Hupp, Oscar Branson, et al. "INDIVIDUAL FORAMINIFERAL ANALYSES: A REVIEW OF CURRENT AND EMERGING GEOCHEMICAL TECHNIQUES." Journal of Foraminiferal Research 54, no. 4 (2024): 312–31. http://dx.doi.org/10.61551/gsjfr.54.4.312.

Texto completo da fonte
Resumo:
Abstract The trace element (TE) and isotopic composition of calcareous foraminifera has been invaluable in advancing our understanding of environmental change throughout the geological record. Whereas “bulk” geochemical techniques, typically requiring the dissolution of tens to hundreds of foraminiferal tests for a single analysis, have been used for decades to reconstruct past ocean-climate conditions, recent technological advances have increased our ability to investigate foraminiferal geochemistry from an individual test to a micron-scale domain level. Here we review current and emerging te
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Yudovich, Yakov. "Paradoxes of manganese geochemistry." Priroda, no. 8 (1308) (2024): 38. https://doi.org/10.7868/s0032874x2408005x.

Texto completo da fonte
Resumo:
The article describes the paradoxical feature of manganese geochemistry, which was first pointed out in 1934 by V. I. Vernadsky. It is explained by the powerful influence of bios, which provides an unusual character of the processes of concentration and scattering, oxidation and reduction of Mn, which would seem to contradict the laws of thermodynamics. Based on the generalization of modern data, in addition to the mai paradox discovered by Vernadsky, the article identifies and describes 9 other paradoxical features of Mn geochemistry, named after A. B. Ronov, G. N. Baturin and J. Buchanan, V.
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Martin, M. H., and I. Thornton. "Applied Environmental Geochemistry." Journal of Applied Ecology 22, no. 3 (1985): 1028. http://dx.doi.org/10.2307/2403267.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Kalsbeek, F. "Geochemistry in GGU." Rapport Grønlands Geologiske Undersøgelse 148 (January 1, 1990): 43–45. http://dx.doi.org/10.34194/rapggu.v148.8118.

Texto completo da fonte
Resumo:
Chemical analyses are essential for many of GGU's activities, especially in the search and evaluation of mineral resources and in the study of rock units. GGU has a well-equipped laboratory for the analysis of rock material, and has a close cooperation with laboratories belonging to the Department of Geology of the University of Copenhagen and the Risø National Laboratory, Denmark.
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Shimizu, Hiroshi. "Processes in Geochemistry." TRENDS IN THE SCIENCES 10, no. 1 (2005): 96–97. http://dx.doi.org/10.5363/tits.10.96.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Qin, Liping, and Xiangli Wang. "Chromium Isotope Geochemistry." Reviews in Mineralogy and Geochemistry 82, no. 1 (2017): 379–414. http://dx.doi.org/10.2138/rmg.2017.82.10.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

Rouxel, Olivier J., and Béatrice Luais. "Germanium Isotope Geochemistry." Reviews in Mineralogy and Geochemistry 82, no. 1 (2017): 601–56. http://dx.doi.org/10.2138/rmg.2017.82.14.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

Penniston-Dorland, Sarah, Xiao-Ming Liu, and Roberta L. Rudnick. "Lithium Isotope Geochemistry." Reviews in Mineralogy and Geochemistry 82, no. 1 (2017): 165–217. http://dx.doi.org/10.2138/rmg.2017.82.6.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

Teng, Fang-Zhen. "Magnesium Isotope Geochemistry." Reviews in Mineralogy and Geochemistry 82, no. 1 (2017): 219–87. http://dx.doi.org/10.2138/rmg.2017.82.7.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Poitrasson, Franck. "Silicon Isotope Geochemistry." Reviews in Mineralogy and Geochemistry 82, no. 1 (2017): 289–344. http://dx.doi.org/10.2138/rmg.2017.82.8.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Barnes, Jaime D., and Zachary D. Sharp. "Chlorine Isotope Geochemistry." Reviews in Mineralogy and Geochemistry 82, no. 1 (2017): 345–78. http://dx.doi.org/10.2138/rmg.2017.82.9.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

Savenko, V. S. "Ecology in geochemistry." Moscow University Geology Bulletin 66, no. 3 (2011): 163–70. http://dx.doi.org/10.3103/s0145875211030100.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

Smith, H. J. "GEOCHEMISTRY: Cultured Carbonate." Science 290, no. 5500 (2000): 2215c—2215. http://dx.doi.org/10.1126/science.290.5500.2215c.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

Rowan, L. "GEOCHEMISTRY: Bacterial Spelunkers." Science 304, no. 5672 (2004): 799a. http://dx.doi.org/10.1126/science.304.5672.799a.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

Yeston, J. "GEOCHEMISTRY: Postdiluvian Pb." Science 314, no. 5803 (2006): 1218d—1219d. http://dx.doi.org/10.1126/science.314.5803.1218d.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

O'Day, Peggy A. "Molecular environmental geochemistry." Reviews of Geophysics 37, no. 2 (1999): 249–74. http://dx.doi.org/10.1029/1998rg900003.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

Hanson, B. "GEOCHEMISTRY: Shifting Grasses." Science 310, no. 5752 (2005): 1247d. http://dx.doi.org/10.1126/science.310.5752.1247d.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

Anonymous. "Trace element geochemistry." Eos, Transactions American Geophysical Union 66, no. 13 (1985): 137. http://dx.doi.org/10.1029/eo066i013p00137-05.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

Hanson, B. "GEOCHEMISTRY: Team Effort." Science 320, no. 5881 (2008): 1263a. http://dx.doi.org/10.1126/science.320.5881.1263a.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

Hostettler, John D. "Geochemistry for chemists." Journal of Chemical Education 62, no. 10 (1985): 823. http://dx.doi.org/10.1021/ed062p823.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

ELLIOTT, HERSCHEL A. "Applied Environmental Geochemistry." Soil Science 140, no. 4 (1985): 307. http://dx.doi.org/10.1097/00010694-198510000-00015.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!