Literatura científica selecionada sobre o tema "Geology ; Ore deposits ; Silver ores"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Geology ; Ore deposits ; Silver ores".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Artigos de revistas sobre o assunto "Geology ; Ore deposits ; Silver ores"

1

Shvedov, Gennadiy, Pavel Samorodsky, Vladimir Makarov, Egor Muromtsev, Maksim Shadchin, Boris Lobastov e Yuri Glushkov. "Arsenical native copper from Au-Cu porphyry Ak-Sug deposit, Eastern Tyva". Ores and metals, n.º 1 (21 de maio de 2021): 77–92. http://dx.doi.org/10.47765/0869-5997-2021-10005.

Texto completo da fonte
Resumo:
The geology of the Ak-Sug Au-Cu-porphyry deposit in the eastern Tyva is considered. The distribution of native copper in ores of the deposits was studied. It has been established that the native copper is of both hypogene and supergene origin. The hypogene native copper is characterized by an elevated arsenic content (up to 4.4 %) and occurs in association with copper arsenides, native silver, zircon, brannerite, xenotime-(Y), florensite-(Ce), chalcocite, and berzelianite. Hypogene native copper is confined to ore schistosity zones .
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Lien, Nguyen Thi, e Nguyen Van Pho. "Formation of secondary nonsulfide zinc ore in Cho Dien Pb-Zn deposits". VIETNAM JOURNAL OF EARTH SCIENCES 40, n.º 3 (4 de junho de 2018): 228–39. http://dx.doi.org/10.15625/0866-7187/40/3/12615.

Texto completo da fonte
Resumo:
In Viet Nam, non-sulfide zinc ore in the Cho Dien deposit has been exploited for a long time. Up to the present, zinc ore remains the major exploited ore in Cho Dien. There are numerous studies of Pb-Zn ore in Cho Dien. However, most of the studies have dedicated only to description of mineralogical and chemical composition of Pb-Zn ore. There has been no publication on this non-sulfide zinc ore. Based on the mineralogical studies, the content of Pb and Zn in groundwater determined by reflective microscope, SEM, EPMA and ICP-MS methods, the study explained the formation of secondary non-sulfide zinc ore in the Cho Dien deposit. Strong weathering process makes the upper part of ore bodies completely oxidized. Difference in geochemical behavior of lead (Pb) and zinc (Zn) in the oxidation process of Pb-Zn ore is the reason to form non-sulfide zinc ore in the Cho Dien deposit. Oxidation of primary Pb-Zn ore is mainly sphalerite, pyrite, galena minerals which creates a low pH environment and transforms of zinc from immobile (sphalerite - ZnS) to mobile (Zn2+) and retained in solution under acid pH conditions whereas lead has the tendency to form soluble minerals (anglesite, cerussite). The acid neutralization actions of the surrounding rocks make zinc precipitate, to form secondary non-sulfide zinc minerals.ReferencesAndreas Nuspl, 2009. Genesis of nonsulfide zinc deposits and their future utilization (www.geo.tu-frei berg.de/oberseminar/OS_09/Andreas_Nuspl.pdf.Boland M.B., et al., 2003. The Shaimerden supergene zinc deposit, Kazakhstan: Economic Geology, 98(4), 787-795.Chau N.D., Jadwiga P., Adam P., D.V. Hao, L.K. Phon, J. Paweł, 2017. General characteristics of rare earth and radioactive elements in Dong Pao deposit, Lai Chau, Vietnam, Vietnam J. Earth Sci., 39(1), 14-26.Dao Thai Bac, 2012. Characteristics and distribution law of lead-zinc metallogenic fomations in Viet Bac region. Doctoral thesis.Heyl A.V., Bozion C.N., 1962. Oxidized zinc deposits of the United States, Part 1. General Geology: U.S. Geological Survey Bulletin 1135-A.Hoa T.T., et al., 2010. By-products in lead-zinc and copper ores of Northeast Vietnam. J. Sci. of the Earth, 289-298 (in Vietnamese).Hoang Minh Thao, Tran Thi Hien, Dao Duy Anh, Pham Thi Nga, 2017. Mineralogical characteristics of graphite ore from Bao Ha deposit, Lao Cai Province and proposing a wise use. Vietnam J. Earth Sci., 39(4), 324-336.Jurjovec J., et al., 2002. Acid neutralization mechanisms and metal release in mine tailings: A laboratory column experiment: Geochimica et Cosmochimica Acta, 66, 1511-1523.Large D., 2001. The geology of non-sulphide zinc Deposits - an Overview: Erzmetall, 54(5), 264-276.Maria Boni, 2003. Nonsulfide Zinc Deposits: a new - (old) type of economic mineralization. Society for geology applied to mineral deposits (SGA) News, Number 15. https://www.e-sga.org/fileadmin/sga/newsletter/news15/art01.html.McPhail D.C., et al., 2003, The geochemistry and mobility of zinc in the regolith: in Roach, I.C., ed., Advances in Regolith, 287-291.Murray W. Hitzman, et al., 2003. Classification, genesis, and exploration guides for non-sulfide zinc deposits: Economic Geology, 98(4), 685-714.Nguyen V.P., 2013. Wet tropical wethering in Viet Nam. Natural Science and Technology Publisher.Nicola Mondillo, 2013. Supergene Nonsulfide Zinc-Lead Deposits: The Examples of Jabali (Yemen) and Yanque (Peru). Doctoral thesis.Nordstrom D.K., Alpers C.N., 1999. Geochemistry of acid mine waste. Review in Economic Geology, the environmental geochemistry of ore deposits/Eds. G.S.Plumlee, M.J. Logsdon. Part A: Processes, techniques, and health issues, 6A, 133-160.Reynolds N.A., et al., 2003. The Padaeng Supergene Nonsulfide Zinc Deposit, Mae Sod, Thailand. Economic Geology, 98(4), 773-785.Sangameshwar S.R., Barnes H.L., 1983. Supergene Processes in Zinc-Lead-Silver Sulfide Ores in Carbonates: Economic Geology, 78, 1379-1397.Stumm W., Morgan J.J., 1996. Aquatic Chemistry, Third Edition. John Wiley & Sons, New York, NY.Takahashi T., 1960. Supergene alteration of zinc and lead deposits in limestone: Economic Geology, 55, 1083-1115.Thornber M.R. and Taylor G.F., 1992. The mechanisms of sulphide oxidation and gossan formation, in: Butt, C.R.M., and Zeegers H., (Eds.)., Regolith exploration geochemistry in tropical and subtropical terrains, in Govett G.J.S., ed., Handbook of exploration geochemistry: Amsterdam, Elsevier, 4, 119-138.Tran Trong Hoa, 2005. Potential assessment of By- products in lead-zinc and copper deposits of Northeast Vietnam. Final report.Tran Tuan Anh, 2010. Studying accompanying component in the types of potential deposits of basic metals and precious - rare metals of north Viet Nam to improve the efficiency of mining and environmental protection. Final report. KC.08.24/06-10.Tran Tuan Anh, et al., 2011. Mineralogical and geochemical characteristics and forming conditions of lead - zinc deposits in Lo Gam structure, northern Vietnam. J. Sci. of the Earth, 33(3DB), 393-408 ( in Vietnamese).Vito Coppola et al., 2009. Nonsulfide zinc deposits in the Silesia - Cracow district, Southern Poland. Springer Link, 44, 559-580.Vito Coppola, et al., 2007. Non-sulfide zinc deposits in Upper Silesia, Southern Poland. Proceeding of the Ninth Biennial SGA Meeting, Dublin, 1401-1404.Williams P.A., 1990. Oxide zone geochemistry: Ellis Horwood Ltd., Chichester, UK, 286p.
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Kalinin, Arkadii A., e Nikolay M. Kudryashov. "Porphyry-Related Metamorphosed Au-Ag and Cu-Mo Deposits in the Precambrian of the Fennoscandian Shield". Minerals 11, n.º 2 (29 de janeiro de 2021): 139. http://dx.doi.org/10.3390/min11020139.

Texto completo da fonte
Resumo:
The Pellapahk Cu-Mo and Oleninskoe Au-Ag deposits in the western segment of the Russian Arctic in the Kolmozero–Voronya greenstone belt are considered two parts of an Archean (2.83–2.82 Ga) porphyry-epithermal system, probably the oldest one defined in the Fennoscandian Shield. Formation of the Oleninskoe Au-Ag deposit at the epithermal stage of the system is indicated by the spatial and genetic relationships with the sills of granite porphyry, the geochemical association of ore elements (Au, Ag, Cu, Pb, Sb, As), an Au/Ag ratio of <0.2, and the multiplicity of silver mineralization with different Ag, Cu, Pb, Sb sulfosalts. The geological–structural characteristics of the Oleninskoe and the Pellapahk, i.e., their location in a shear zone, the morphology and size of ore bodies, the scale of the deposits, and the intensity and zoning of rock alteration, do not oppose this model. Mineralized rocks of the Pellapahk Cu-Mo and Oleninskoe Au-Ag deposits were amphibolite metamorphosed in the Neoarchean and again in the Paleoproterozoic. Structures of sulfide melt crystallization formed in the ores during metamorphism, those are fine intergrowths of galena, argentotetrahedrite, pyrargyrite, pyrrhotite, ullmannite, stutzite, and other mineral phases of low-melting-point metals such as Ag, Cu, Pb, Sb, As, Bi.
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Lebedev, V. I., A. A. Borovikov, L. V. Gushchina e I. S. Shabalin. "Physico-chemical modeling of hidrothermal mineralization processes at Ni-Co-As (± U-Ag), Co-S-As (± Au-W), Cu-Co-As (± Sb-Ag) deposits." Геология рудных месторождений 61, n.º 3 (19 de junho de 2019): 31–63. http://dx.doi.org/10.31857/s0016-777061331-63.

Texto completo da fonte
Resumo:
A generalization of the results of the study of the composition of metal-bearing fluids of cobalt deposits of hydrothermal Genesis, formed in different geodynamic settings in connection with the formation of alkaline and alkaline-basite intrusions and dikes. To determine the physical and chemical parameters of ore deposition from fluid inclusions in minerals, both traditional and new instrumental methods of thermobarogeochemistry were used: thermo-and cryometry, RAMAN spectroscopy, concentration of ore and petrogenic elements in individual fluid inclusions were evaluated by LA-ICP-MS. The obtained results served as the basis for the study, the main task of which was the thermodynamic modeling of the conditions of joint transport and deposition of Co, Ni, Cu, Fe, Mg, Ca, Ag, Au, Bi, U, Pt and Pd C calculation of a number of equilibrium States of the hydrothermal system, the composition close to the natural ore-forming fluids. Physical and chemical factors of native deposits-gold, silver, platinum and palladium in the ores of such deposits are revealed. The obtained data can serve as a basis for the development of correct genetic models of ore-forming systems of cobalt deposits and contribute to solving the problems of their search.
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Colomban, Philippe, Burcu Kırmızı e Gulsu Simsek Franci. "Cobalt and Associated Impurities in Blue (and Green) Glass, Glaze and Enamel: Relationships between Raw Materials, Processing, Composition, Phases and International Trade". Minerals 11, n.º 6 (15 de junho de 2021): 633. http://dx.doi.org/10.3390/min11060633.

Texto completo da fonte
Resumo:
Minerals able to colour in blue (and green in combination with yellow pigments) are limited in number and geologically. After presenting a short history of the use of cobalt as a colouring agent of glass, glaze and enamel in the Western/Mediterranean, Islamic and Asian worlds since Antiquity, we will present the different forms (dissolved ions, natural and synthetic crystalline phases/pigments) of cobalt and associated elements regarding primary (transition metals) and secondary geological deposits (transition metals and/or arsenic, bismuth, silver). Attempts to identify the origin of cobalt have been made by many authors considering the associated elements but without considering the important modifications due to different processing of the raw materials (extraction/purification/formulation). We review the information available in the ancient reports and present literature on the use of cobalt, its extraction and production from the ores, the different geological sources and their relationship with associated elements (transition metals, bismuth, arsenic, and silver) and with technological/aesthetic requirements. (Partial) substitution of cobalt with lapis lazuli is also addressed. The relative application of non-invasive mobile Raman and pXRF analytical instruments, to detect mineral phases and elements associated with/replacing cobalt is addressed, with emphasis on Mamluk, Ottoman, Chinese, Vietnamese and Japanese productions. The efficiency of Ni-Zn-As diagram proposed by Gratuze et al. as a classification tool is confirmed but additionally, CoO-Fe2O3−MnO and CoO-NiO-Cr2O3 diagrams are also found as very efficient tools in this research. The relationship between the compositional data obtained from the artefacts and historical questions on the origin and date of their production are discussed in order to obtain a global historical view. The need of a better knowledge of (ancient) deposits of cobalt ores and the evolution of cobalt ore processing with time and place is obvious.
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Diallo, Mamadoudjan, Mohammed Bouabdellah, Gilles Levresse, Johan Yans, Francesca Castorina, Andreas Klügel, Mohamed Mouhagir, Salim El Mouden e Lhou Maacha. "Mineralogy, Fluid Inclusion, and C-O-Sr Isotope Geochemistry to Unravel the Evolution of the Magmatic-Hydrothermal System at the Igoudrane Silver-Rich Deposit (Imiter District, Eastern Anti-Atlas, Morocco)". Minerals 11, n.º 9 (12 de setembro de 2021): 997. http://dx.doi.org/10.3390/min11090997.

Texto completo da fonte
Resumo:
The Igoudrane mine with a total production of 700,000 t of ore grading 485 g/t Ag is currently one of the most productive mines in the Imiter district of the eastern Anti-Atlas in Morocco. The silver-rich ± base metal deposit occurs dominantly as vein- and hydrothermal breccia-hosted orebodies at the interface between the lower Ediacaran turbidites of the Saghro Group and the unconformably overlying, dominantly felsic volcanic, and volcaniclastic rocks of the late Ediacaran Ouarzazate Group. Higher-grade ores are lithologically hosted by the uppermost organic-rich black shale unit and structurally controlled by the intersection of subvertical NW- and NE-trending fault systems. Ore-related hydrothermal alteration includes, in order of decreasing abundance, carbonatization, silicification, sericitization, and chloritization. Three primary paragenetic stages of veining and associated silver ± base metal mineralization have been recognized: (1) early pyrite + quartz + Ag-bearing sulfides and sulfosalts; (2) main Ag-bearing sulfides and sulfosalts + calcite ± fluorite ± dolomite; and (3) late quartz + calcite + base-metal sulfides (galena, sphalerite, pyrite, chalcopyrite). Irrespective of the ore stage, the dominant Ag-bearing ore minerals are Ag-Hg amalgam, argentite, freibergite, acanthite, polybasite, pyrargyrite, and proustite. Fluid inclusion data show a trend of decreasing temperatures with time, from the main silver stage (Th = 180 ± 12 °C) to late base-metal stage (Th = 146 ± 7 °C), consistent with fluid mixing, cooling, and/or dilution. The coexistence of aqueous-rich and vapor-rich fluid inclusions together with variations in bulk salinity (NaCl + CaCl2) of the mineralizing fluids during the main silver stage, at similar temperatures, indicate that boiling and subsequent degassing occurred during the main ore-forming event due to a pressure decrease. Calculated δ18Ofluid values along with REE+Y and Sr isotope constraints suggest that the ore-forming fluids originated from a predominantly magmatic source, although incursion of meteoric waters during collapse of the hydrothermal system could have contributed to deposition. The post-ore, base-metal quartz-carbonate-dominated mineralization was deposited from dilute Ca-Na-Cl-bearing fluids at temperature below 150 °C. Overall, fluid–rock interaction with the black shales along major faults and thin permeable horizons, boiling-degassing—with subsequent fluid mixing, cooling, and/or dilution—were the main mechanisms of silver deposition.
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Makshakov, Artem S., e Raisa G. Kravtsova. "Stream Sediments of the Pestrinsk Silver-Bearing System (Northeastern Russia)". Minerals 11, n.º 1 (11 de janeiro de 2021): 65. http://dx.doi.org/10.3390/min11010065.

Texto completo da fonte
Resumo:
The composition, structure, and formation features of the exogenous anomalous geochemical fields (AGCFs) identified through stream sediments (SSs) are considered here within the Pestrinsk silver-bearing system and the Goltsovy silver-polymetallic deposit. The research was performed in the southern part of the Balygychan-Sugoy trough (northeastern Russia). The exogenous AGCFs of the main indicator elements of ores, formed in cryolithogenesis zone conditions, were studied. We used the results of multi-scale areal geochemical surveys of SSs. A survey of SSs at 1:200,000 scale was found to be effective at the stage of regional forecasting. Indeed, it is characterized by simplicity and the possibility of obtaining information operatively regarding the metallogeny of the area. It was found that at the local forecast stage, when prospecting for mineralization, the most effective was a survey of SSs at 1:50,000 scale. The AGCFs identified during this survey were distinguished by a richer component composition, higher contrast, and closer relationship with ores. During the lithochemical sampling of the watercourse heads, where alluvial sediments were found to be almost completely absent, a positive result was obtained by the bryolithochemical method, which is based on moss sampling together with a fine fraction of alluvium held by a moss cushion. The method enabled the sampling of watercourse heads and thus yielded information about the presence or absence of anomalous concentration fields of ore elements.
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Barton, Paul B. "Ore textures: problems and opportunities". Mineralogical Magazine 55, n.º 380 (setembro de 1991): 303–15. http://dx.doi.org/10.1180/minmag.1991.055.380.02.

Texto completo da fonte
Resumo:
AbstractOver the past several decades, thinking about chemical processes in rocks had been dominated by experimental and theoretical treatments of mineral equilibrium, which is the state from which the time variable has been excluded. But, to an extent exceeding that of any of our sister sciences, we in geology are concerned with the behaviour of things as a function of time; thus equilibrium is but one of several interesting boundary conditions. Textures, (defined as the spatial relations within and among minerals and fluids, regardless of scale or origin) provide a means to sort out and identify successive states. In fact, it is the pattern of evolution of those states that enables us to deduce the processes. We may well draw the analogy with thermodynamics and kinetics, respectively:equilibrium textures and phase assemblages, via thermodynamic analysis → definition of conditions of equilibration,whereaskinetics, as displayed in disequilibrium textures → sequence of events and processes of mineralization.The interpretation of textures is one of the most difficult yet important aspects of the study of rocks and ores, and there are few areas of scientific endeavour that are more subject to misinterpretation. Although the difficulties are many, the opportunites for new understanding are also abundant. Textural interpretations have many facets: some are well established and accepted; some that are accepted may be wrong; others are recognised to be speculative and controversial; and we trust that still other textural features remain to be described and interpreted. This paper will deal principally with low-temperature, epigenetic ore deposits, and will emphasise silica and sphalerite; but extension to other materials is not unreasonable.Ore and gangue minerals react internally, or with their environment, at widely ranging rates, ranging from the almost inert pyrite, arsenopyrite, well-crystallised quartz, and tourmaline to the notoriously fickle copper/iron and copper/silver sulfides. Arrested or incomplete reactions may be identifed by textural criteria and, when appropriately quantified, can provide guides to the duration of geological processes.In recent years so much emphasis has been placed on isotopes, fluids, chemistry, and deposit and process models that the textural features have been ignored. In part this oversight occurs because we have grown accustomed to using superposition, cross-cutting, pseudomorphism, mutual intergrowths, exsolution and so on as off-the-shelf tools, to be grasped and applied without evaluation or even description. Surely science must build on previous work without constant and exhaustive reassessment, but for mineral textures a little reassessment may yield substantial benefit.
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Ratkin, V. V., L. F. Simanenko e O. A. Eliseeva. "Microfacies and Mineral Assemblages of Silver–Base-Metal Ores of the Maiminovskoe Vein Deposit (Sikhote-Alin, Dal’negorsky Ore District)". Russian Journal of Pacific Geology 12, n.º 6 (novembro de 2018): 521–38. http://dx.doi.org/10.1134/s1819714018060052.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Osmonbetov, E. "Geology and Goldness Deposits Shambesai". Bulletin of Science and Practice 6, n.º 5 (15 de maio de 2020): 249–56. http://dx.doi.org/10.33619/2414-2948/54/31.

Texto completo da fonte
Resumo:
The specificity of the location and the degree of field search are shown. The characteristic of ore zones (bodies), the mineral composition of ores and reserves are given. The deposit is similar to the gold deposits of the Karlinsky type. Two main technological types of ores have been distinguished: easily miscible oxidized ores that do not contain harmful impurities, suitable for heap leaching, and refractory sulfide gold-arsenic ores, requiring special complex processing methods. These ores are planned to be mined together with oxidized and temporarily stored separately. It is necessary to organize a public hearing and involve professional experts in the examination of projects.
Estilos ABNT, Harvard, Vancouver, APA, etc.
Mais fontes

Teses / dissertações sobre o assunto "Geology ; Ore deposits ; Silver ores"

1

Thomson, Brian. "Geology of silver mineralisation at Candelaria, Nevada, USA". Thesis, University of Aberdeen, 1990. http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?pid=238078.

Texto completo da fonte
Resumo:
Candelaria, situated in central western Nevada, along the western margin of the Great Basin, is a large and predominantly low grade, epigenetic disseminated- and vein-type Ag deposit, of Early Cretaceous age. It represents the eroded, deeply oxidised and fault-disrupted root of extensive stratiform quartz-dolomite stockworked and sericite-dolomite-altered zones of medium temperature pyrite-dominated Ag(-Pb-Zn-Sb-As±Cu±Au) sulphide-sulphosalt mineralisation, which is hosted by receptive sedimentary and igneous rocks within structurally favourable zones in a district-scale tectonic pinchout, and which is genetically associated with Cordilleran granodiorite porphyry hypabyssal magmatism (diking), of high K calc-alkaline affinity. The mineralisation occurs along and directly beneath the Pickhandle allochthon, a serpentinite-sheathed volcanic-sedimentary tectonic méange which forms a local 'sole' plate to the regionally extensive Golconda allochthon, which was emplaced onto the edge of continental North America during the Early Triassic Sonoma orogeny. Mineralisation occurred where an irregularity in the Pickhandle thrust plane, caused by thickening of the méange, effected locally deeper truncation of the parautochthonous foreland sequence in its footwall - chiefly marine sediments of the Lower Triassic Candelaria Formation - against the deformed cherts of the Ordovician basement (Palmetto complex), to form a structural trap. Within this trap, mineralisation is hosted mainly by carbonaceous, carbonate- and phosphate-rich (and trace metal-rich) black shales at the base of the Candelaria Formation and by dolomite-quartz-altered serpentinites at the base of the Pickhandle allochthon. Stable isotope data (O, H, S) point to a predominantly magmatic source for the hydrothermal fluids and ore sulphur, a source most likely to be the parent pluton to the granodiorite porphyry dikes. More ore metals were also of igneous origin (mass balance calculations rule out Candelaria member 1 as the chief metal source).
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Devlin, Barry David. "Geology and genesis of the Dolly Varden silver camp, Alice Arm area, northwestern British Columbia". Thesis, University of British Columbia, 1987. http://hdl.handle.net/2429/26243.

Texto completo da fonte
Resumo:
The Dolly Varden camp, Alice Arm area, northwestern British Columbia, is characterized by stratiform and volcanogenic silver-lead-zinc-barite deposits in Early to Middle Jurassic calc-alkaline volcanic rocks of the Hazelton Group. These deposits, containing exceptional silver and significant base metal values, are in andesitic tuffaceous rocks, and occur typically as layers of quartz, carbonate, barite and jasper, with lesser amounts of pyrite, sphalerite and galena, and sparse chalcopyrite. Production from three deposits, the Dolly Varden, Northstar and Torbrit mines, totaled 1,284,902 tonnes of ore that averaged 484g silver per tonne, 0.38 percent lead and 0.02 percent zinc. The Hazelton Group is a thick, widespread assemblage of basaltic to rhyolitic volcanic flow rocks, their tuffaceous equivalents, and derived sedimentary rocks. Dolly Varden camp is underlain by more than 3,000m of Hazelton Group rocks comprised of one major volcanic and one major sedimentary formation. Volcanic rocks underlie sedimentary rocks and have been subdivided into footwall and hangingwall units based on stratigraphic position relative to the mineralized stratiform horizon. Footwall volcanic rocks consist of green ± maroon basaltic-andesite tuff, green ± maroon porphyritic andesite and green andesite shard tuff. Stratiform mineralization rests conformably upon the underlying green andesite shard tuff. Hangingwall volcanic rocks above the stratiform layer consist of pale grey basaltic-andesite ash tuff, maroon basaltic-andesite ash-lapilli tuff, grey-green porphyritic andesite, and pale green andesite ash tuff. Hangingwall volcanics are unconformably capped by sedimentary rocks consisting of maroon siltstone, calcareous and fossiliferous wacke, and black siltstone and shale; black siltstone and shale form the youngest rock unit of the Hazelton Group in the Dolly Varden area. Basalt and lamprophyre dykes intrude all rocks of the Hazelton Group. The rocks of the Hazelton group exposed in the Dolly Varden camp are folded into a series of anticlines and synclines with gentle, northwestern plunges. Two major sets of nearly vertical block faults cut all rock units; earlier faults trend northwest and younger faults trend north-northeast. Geological mapping, combined with petrologic, petrographic and isotopic data, indicate that the stratiform deposits probably formed as submarine exhalative deposits associated with andesitic volcanism of the Hazelton Group during the Early to Middle Jurassic. Evidence for a volcanogenic origin is the conformity of layered mineralization with stratigraphy, lateral and vertical mineral zonation patterns, consistent hangingwall versus footwall contact relationships, fragments of stratiform ore within tuffaceous volcanic rocks of the hangingwall, consistent differences in the stable isotopic compositions between the sulfides versus barite, quartz and carbonate gangue, and the Jurassic "fingerprint" for the lead-bearing deposits of the Dolly Varden camp. The Dolly Varden deposits display criteria for classification of a new, previously unrecognized, stratiform and volcanogenic, deposit type, named here, the "Dolly Varden type", and is characterized by silver-rich, low sulfide and high oxide stratiform mineralization within andesitic volcanic rocks.
Science, Faculty of
Earth, Ocean and Atmospheric Sciences, Department of
Graduate
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Unger, Derick Lee Saunders James A. Hames W. "Geochronology and geochemistry of Mid-Miocene Bonanza low-sulfidation epithermal ores of the northern Great Basin, USA". Auburn, Ala, 2008. http://repo.lib.auburn.edu/EtdRoot/2008/SPRING/Geology_and_Geography/Thesis/Unger_Derick_6.pdf.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Osterholt, Volker. "Simulation of ore deposit geology and an application at the Yandicoogina iron ore deposit, Western Australia / y Volker Osterholt". [St. Lucia, Qld.], 2006. http://www.library.uq.edu.au/pdfserve.php?image=thesisabs/absthe19175.pdf.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Johansson, Simon. "Ore mineralogy and silver distribution at the Rävliden N volcanogenic massive sulphide deposit, Skellefte district, Sweden". Thesis, Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-66264.

Texto completo da fonte
Resumo:
The Rävliden North deposit (Rävliden N) is a volcanogenic massive sulphide (VMS) deposit in the western part of the Skellefte district, northern Sweden. The district is one of Sweden’s major metallogenic provinces with a significant amount of VMS deposits. The Rävliden N deposit, discovered in 2011, contains copper, zinc, lead, silver and subordinate gold and occurs close to the largest VMS deposit in the district, the Kristineberg deposit, which has been mined for more than 70 years. The purpose of this master thesis is to study the composition, mineralogy and paragenetic relationships in different types of sulphide mineralization from the Rävliden N deposit. Emphasis is placed on characterizing the distribution and paragenetic relationships of silver-bearing minerals. The methods include core logging, sampling and mineralogical studies through light optical microscopy (LOM), scanning electron microscopy (SEM) and quantitative evaluation of mineralogy by scanning electron microscopy (QEMSCAN). Lastly, electron microprobe analysis (EMPA) was used to determine the chemical composition of silver-bearing minerals and sulphides. Mineralization types studied include 1: the main massive to semi-massive sulphide mineralization, 2: stratigraphically underlying stringer mineralization and 3: local, vein- and/or fault-hosted silver-rich mineralization in the stratigraphic hanging wall. The massive to semi-massive sulphide mineralization is dominated by sphalerite with lesser galena and pyrrhotite. In contrast, the stringer mineralization is dominated by chalcopyrite and pyrrhotite. The major minerals show evidence of a coeval formation and textural as well as structural evidence suggest that ductile deformation has affected the mineralization types. Notable evidence includes ball-ore textures, accumulation of minerals in pressure shadows and brittle fracturing of competent arsenopyrite and pyrite porphyroblasts and infilling by more incompetent sulphide minerals. The silver-bearing minerals identified are commonly spatially associated with galena and the major species is freibergite ((Ag,Cu,Fe)12(Sb,As)4S13), which also occur as inclusions in chalcopyrite mainly in the stringer mineralization. The stringer mineralization also contains notable amounts of hessite (Ag2Te). Notably, galena, pyrrhotite, freibergite and other sulphosalt minerals are commonly accumulated in pressure shadows near host rock fragments in the massive to semi-massive sulphide mineralization. The only gold-bearing mineral identified in this study is electrum (Au, Ag) in the stringer mineralization. The hanging wall mineralization locally comprises faulted and/or sheared massive sulphide mineralization which is compositionally similar to the main massive to semi-massive sulphide mineralization, besides a significantly higher content of freibergite. However, parts of the hanging wall mineralization are entirely dominated by sulphides and sulphosalts of silver, such as pyrargyrite (Ag3SbS3), pyrostilpnite (Ag3SbS3), argentopyrite (AgFe2S4), sternbergite (AgFe2S3) and stephanite (Ag5SbS4). These occur in structurally late settings, which along with consideration of their temperature stabilities suggest a late origin. Since the silver-bearing minerals in the massive to semi-massive sulphide mineralization and the two varieties of hanging wall mineralization contains the same metals, the mineralization in the hanging wall may have formed by late-stage remobilization of ore components from the underlying Rävliden N deposit. This negates the need for multiple mineralization events to explain the local silver-enriched zones in the hanging wall. The paragenetically late mineralization types contains high content of Ag-bearing minerals in relation to base metal sulphides. This suggests that remobilisation processes were important for locally upgrading the Ag-content.
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Gapara, Cornwell Sine. "A review of the deposition of iron-formation and genesis of the related iron ore deposits as a guide to exploration for Precambrian iron ore deposits in southern Africa". Thesis, Rhodes University, 1993. http://hdl.handle.net/10962/d1005610.

Texto completo da fonte
Resumo:
Iron-formations are ferruginous sedimentary rocks which have their source from fumarolic activity associated with submarine volcanism, with deposition of iron as oxides, hydroxides, and hydrous oxide-silicate minerals in shallow and/or deep marine sedimentary systems. The Precambrian ironformations of southern Africa have a wide age range, but are more prominently developed before 1.SGa. These iron formations occur in greenstone belts of the Kaapvaal and Zimbabwean cratons, in the Limpopo mobile belt, in cratonic basins and in the Damara mobile belt. The Archaean-Proterozoic sedimentary basins and greenstone belts host iron ore deposits in iron-formation. Iron formations have a lengthy geological history. Most were subjected to intense, and on occasions repeated, tectonic and metamorphic episodes which also included metasomatic processes at times to produce supergene/hypogene high grade iron ores. Iron-formations may be enriched by diagenetic, and metamorphic processes to produce concentrating-grade ironformations. Uplift, weathering and denudation, have influenced the mineral association and composition of the ores, within which magnetite, haematite and goethite constitute the major ore minerals. The iron resources of the southern Africa region include the Sishen deposits, hosting to about 1200 Mt of high grade direct shipping ore, at >63% Fe. Deposits of Zimbabwe have more than 33 000 Mt of beneficiable iron-formation. The evaluation of an iron ore prospect involves many factors which must be individually assessed in order to arrive at an estimate of the probable profitability of the deposit. Many of these are geological and are inherent in the deposit itself. Other factors are inherent aspects of the environment in which the ore is formed. Although the geological character of the ore does not change, technological advances in the processing techniques may have a great effect on the cost of putting the ore into marketable form. Geochemical, geophysical and remote sensing methods would be used for regional exploration. Chip sampling and drilling are useful for detailed exploration. Purely geological exploration techniques are applicable on a prospect scale in the exploration of iron ore deposits. Regional exploration targeting should choose late Archaean greenstone belts containing oxide facies iron-formation or Early Proterozoic basins located at craton margins as they are both known to host high-grade haematite orebodies formed by supergene/hypogene enrichment. Most types of iron ore deposits in southern Africa are described and classified. An attempt is made to emphasize the major controls on mineralisation, in the hope that these may be applicable to exploration both in the southern African region and within analogous settings around the world.
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Müller, Stefan G. "The tectonic evolution and volcanism of the Lower Wyloo Group, Ashburton Province, with timing implications for giant iron-ore deposits of the Hamersley Province, Western Australia /". Connect to this title, 2005. http://theses.library.uwa.edu.au/adt-WU2006.0043.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Brisson, Harold. "Caractéristiques, chronologie et typologie des minéralisations aurifères de la région du Lac Shortt (Québec), sous-province archéenne de l'Abitibi /". Thèse, Chicoutimi : Université du Québec à Chicoutimi, 1998. http://theses.uqac.ca.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Muller, Stefan G. "The tectonic evolution and volcanism of the Lower Wyloo Group, Ashburton Province, with timing implications for giant iron-ore deposits of the Hamersley Province, Western Australia". University of Western Australia. School of Earth and Geographical Sciences, 2006. http://theses.library.uwa.edu.au/adt-WU2006.0043.

Texto completo da fonte
Resumo:
[Truncated abstract] Banded iron formations of the ~27702405 Ma Hamersley Province of Western Australia were locally upgraded to high-grade hematite ore during the Early Palaeoproterozoic by a combination of hypogene and supergene processes after the initial rise of atmospheric oxygen. Ore genesis was associated with the stratigraphic break between Lower and Upper Wyloo Groups of the Ashburton Province, and has been variously linked to the Ophthalmian orogeny, late-orogenic extensional collapse, and anorogenic continental extension. Small spot PbPb dating of in situ baddeleyite by SHRIMP (sensitive highresolution ion-microprobe) has resolved the ages of two key suites of mafic intrusions constraining for the first time the tectonic evolution of the Ashburton Province and the age and setting of iron-ore formation. Mafic sills dated at 2208 ± 10 Ma were folded during the Ophthalmian orogeny and then cut by the unconformity at the base of the Lower Wyloo Group. A mafic dyke swarm that intrudes the Lower Wyloo Group and has close genetic relationship to iron ore is 2008 ± 16 Ma, slightly younger than a new syneruptive 2031 ± 6 Ma zircon age for the Lower Wyloo Group. These new ages constrain the Ophthalmian orogeny to the period <2210 to >2030 Ma, before Lower Wyloo Group extension, sedimentation, and flood-basalt volcanism. The ~2010 Ma dykes present a new maximum age for iron-ore genesis and deposition of the Upper Wyloo Group, thereby linking ore genesis to a ~21002000 Ma period of continental extension similarly recorded by Palaeoproterozoic terrains worldwide well after the initial oxidation of the atmosphere at ~2320 Ma. The Lower Wyloo Group contains, in ascending order, the fluvial to shallow-marine Beasley River Quartzite, the predominantly subaqueously emplaced Cheela Springs flood basalt and the Wooly Dolomite, a shelf-ramp carbonate succession. Field observations point to high subsidence of the sequence, rather than the mainly subaerial to shallow marine depositional environment-interpretation described by earlier workers. Abundant hydro-volcanic breccias, including hyaloclastite, peperite and fluidal-clast breccia all indicate quench-fragmentation processes caused by interaction of lava with water, and support the mainly subaqueous emplacement of the flood basalt which is also indicated by interlayered BIF-like chert/mudstones and below-wave-base turbiditic mass-flows.
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Land, Jarred. "Genesis of BIF-hosted hematite iron ore deposits in the central part of the Maremane anticline, Northern Cape Province, South Africa". Thesis, Rhodes University, 2014. http://hdl.handle.net/10962/d1020905.

Texto completo da fonte
Resumo:
The Paleoproterozoic Transvaal Supergroup in the Northern Cape Province of South Africa is host to high-grade BIF-hosted hematite iron-ore deposits and is the country’s most important source of iron to date. Previous work has failed to provide a robust and all-inclusive genetic model for such deposits in the Transvaal Supergroup; in particular, the role of hydrothermal processes in ore-genesis has not been adequately clarified. Recent studies by the author have produced evidence for hydrothermal alteration in shales (Olifantshoek Supergroup) stratigraphically overlying the iron-ore intervals; this has highlighted the need to reassess current ore-forming models which place residual supergene processes at the core of oregenesis. This thesis focuses on providing new insights into the processes responsible for the genesis of hematite iron ores in the Maremane anticline through the use of newly available exploration drill-core material from the centre of the anticline. The study involved standard mineralogical investigations using transmitted/reflected light microscopy as well as instrumental techniques (XRD, EPMA); and the employment of traditional whole-rock geochemical analysis on samples collected from two boreholes drilled in the centre of the Maremane anticline, Northern Cape Province. Rare earth element analysis (via ICP-MS) and oxygen isotope data from hematite separates complement the whole-rock data. Iron-ore mineralisation examined in this thesis is typified by the dominance of Fe-oxide (as hematite), which reaches whole-rock abundances of up to 98 wt. % Fe₂O₃. Textural and whole-rock geochemical variations in the ores likely reflect a variable protolith, from BIF to Fe-bearing shale. A standard supergene model invoking immobility and residual enrichment of iron is called into question on the basis of the relative degrees of enrichment recorded in the ores with respect to other, traditionally immobile elements during chemical weathering, such as Al₂O₃ and TiO₂. Furthermore, the apparently conservative behaviour of REE in the Fe ore (i.e. low-grade and high-grade iron ore) further emphasises the variable protolith theory. Hydrothermally-induced ferruginisation is suggested to post-date the deposition of the post-Transvaal Olifantshoek shales, and is likely to be linked to a sub-surface transgressive hydrothermal event which indiscriminately transforms both shale and BIF into Fe-ore. A revised, hydrothermal model for the formation of BIF-hosted high-grade hematite iron ore deposits in the central part of the Maremane anticline is proposed, and some ideas of the author for further follow-up research are presented.
Estilos ABNT, Harvard, Vancouver, APA, etc.
Mais fontes

Livros sobre o assunto "Geology ; Ore deposits ; Silver ores"

1

Fedikow, Mark Albert Fredrick. Geology of the Agassiz stratabound Au-Ag deposit, Lynn Lake, Manitoba. Winnipeg: Manitoba Energy and Mines, Geological Services, 1986.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Nash, J. Thomas. Geology and geochemistry of Tertiary volcanic host rocks, Sleeper gold-silver deposit, Humboldt County, Nevada. Washington: U.S. G.P.O., 1995.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Warmada, I. Wayan. Ore mineralogy and geochemistry of the Pongkor epithermal gold-silver deposit, Indonesia. Clausthal-Zellerfeld: Papierflieger Verlag GmbH, 2003.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Warmada, I. Wayan. Ore mineralogy and geochemistry of the Pongkor epithermal gold-silver deposit, Indonesia. Clausthal-Zellerfeld: Papierflieger, 2003.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

K, Newman, Tsang L, Sanford G e Geological Association of Canada, eds. Geology and ore deposits of the Highland Valley camp. St. John's, Nfld: Geological Association of Canada, 1985.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Iron ore deposits and banded iron formations of India. New Delhi: Daya Pub. House, 2012.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Xu, Zhigang. Mesozoic volcanism and volcanogenic iron-ore deposits in eastern China. Boulder, Colo: Geological Society of America, 1990.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Warner, J. Dean. A columbium-bearing regolith on Upper Idaho Gulch, near Tofty, AK. [Avondale, Md.]: U.S. Dept. of the Interior, Bureau of Mines, 1986.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Likhachev, A. P. Platino-medno-nikelevye i platinovye mestorozhdenii︠a︡ =: Platinum-nickel-copper and platinum deposits. Moskva: Ėslan, 2006.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Amuzinskiĭ, Vladimir Alekseevich. Metallogenicheskie ėpokhi i zolotonosnostʹ rudnykh kompleksov Verkhoi︠a︡nskoĭ skladchatoĭ sistemy. I︠A︡kutsk: I︠A︡kutskiĭ gos. universitet, 2005.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Mais fontes

Capítulos de livros sobre o assunto "Geology ; Ore deposits ; Silver ores"

1

Palacios, C. M. "Geology of the Buena Esperanza Copper-Silver Deposit, Northern Chile". In Stratabound Ore Deposits in the Andes, 313–18. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-88282-1_23.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Motzer, William E., e David A. Mustart. "Mount Diablo mercury deposits". In Regional Geology of Mount Diablo, California: Its Tectonic Evolution on the North America Plate Boundary. Geological Society of America, 2021. http://dx.doi.org/10.1130/2021.1217(03).

Texto completo da fonte
Resumo:
ABSTRACT The California Coast Ranges mercury deposits are part of the western North America mercury belt, in which mercury occurs most commonly as red cinnabar (α-HgS), sometimes associated with its high-temperature polymorph, metacinnabar (β-HgS). In the Coast Ranges, ores were deposited from hydrothermal solutions and range in age from Miocene to Holocene. Ore deposition at Mount Diablo generally occurred along active faults and associated extension fractures in the Franciscan complex, most often in serpentinite that had been hydrothermally altered to silica-carbonate rock. The Mount Diablo mine lies ~48 km (~30 miles) northeast of San Francisco in Contra Costa County and is mineralogically unique in California, because metacinnabar, the higher-temperature polymorph of mercury sulfide, is a major primary ore mineral in the deposit, while at all other mercury mines in California, it is quite rare. In addition, hydrothermal activity is so recent that sulfurous gases and methane continued to be released into the mine at least into the 1940s. Historically, long before active large-scale mining began in the 1800s, the Mount Diablo mercury deposits were known to the Indigenous people of the Ohlone tribes, who used the cinnabar in rituals as well as for red pigment to decorate their bodies, and as a prized trade item. The deposit was later rediscovered in 1863 and mined intermittently until 1958. The Mount Diablo mine and adjacent Rhyne (also variously spelled Ryne or Rhine) mine were the sites of most of the mercury operations in the region, and at both mines, mercury ore occurs in structurally controlled lenticular bodies of silica-carbonate rock and serpentinite. The total district production probably exceeded 12,300 flasks (at 76 pounds or ~34.5 kg per flask) at an estimated grade of 2711 g per metric ton. Low-grade ore reserves are believed to still exist, with 17,000 short tons of indicated and inferred ore. Other minor deposits of copper, silver, and gold occur on Mount Diablo, principally in and around Eagle Peak, but mercury is not associated with these deposits.
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Herz, Norman, e Ervan G. Garrison. "Metallic Minerals and Archaeological Geology". In Geological Methods for Archaeology. Oxford University Press, 1998. http://dx.doi.org/10.1093/oso/9780195090246.003.0018.

Texto completo da fonte
Resumo:
Economic geology had its inception in the ancient utilization of rocks and minerals. The first economic materials were nonmetallic and include flint, quartz, diabase, rhyolite, obsidian, jade, and other stones, which were sought for weapons, implements, adornment, and even art. Beginning with the Upper Paleolithic Aurignacian period, clay began to be widely used for simple figurines, then brick and finally pottery. S. H. Ball identifies 13 varieties of minerals—chalcedony, quartz, rock crystal, serpentine, obsidian, pyrite, jasper, steatite, amber, jadite, calcite, amethyst, and fluorspar—as economic within the Paleolithic. Add to this list the use of ochres and mineral paints together with nephrite, sillimanite, and turquoise. In the standard reference on the nonmetallic deposits, "Industrial Minerals and Rocks", 6th edition published in 1994, deposits are classified by use and the minerals and rocks described as commodities. The fourteen use groups include such items as abrasives, constructions materials, and gem materials; the 48 commodities include clay, diamonds, feldspar, etc. Metalliferous minerals as ore deposits are unevenly distributed throughout the world. The formation of a mineral deposit is an episode or series of episodes in the geological history of a region and reflects three broad categories: (1) igneous activity, (2) sedimentary processes, and (3) metamorphism. Table 12.1 summarizes general features of the three categories of mineral deposits. Admixtures of metals are by far the most common form of mineral deposits. Gold, silver, and copper occur either as native metals or admixed with other metals and compounds. Most ore deposits are actually mixtures of metals: silver commonly with lead, zinc with cadmium, iron with copper. Many metallic ore deposits are products of igneous activity. Conditions change in the magma chamber as the principal rock-forming minerals crystallize, temperature falls as the magma cools, pressure is lowered as the magma rises in the crust, and volatiles increase in the magma chamber.
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

"Regional Variation of Silver and Gold Ratios in Vein Ores of Arizona". In The Geology of Gold Deposits, 626–36. Society of Economic Geologists, 1989. http://dx.doi.org/10.5382/mono.06.48.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Rhys, David A., Peter D. Lewis e Julie V. Rowland. "Chapter 3: Structural Controls on Ore Localization in Epithermal Gold-Silver Deposits: A Mineral Systems Approach". In APPLIED STRUCTURAL GEOLOGY OF ORE-FORMING HYDROTHERMAL SYSTEMS, 83–145. Society of Economic Geologists, 2020. http://dx.doi.org/10.5382/rev.21.03.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Rickard, David. "Hell and Black Smokers". In Pyrite. Oxford University Press, 2015. http://dx.doi.org/10.1093/oso/9780190203672.003.0009.

Texto completo da fonte
Resumo:
Most of the important metal ores in medieval and ancient times were pyrite-rich sulfides. These pyrite-rich ores were a major source of a suite of valuable commodities such as sulfur, arsenic, copper, lead, zinc, and nickel, as well as some gold and silver. This is why in 1725 Henckel could devote a 1,000-page volume to pyrites, sensu lato. Because of its relative abundance, its potential economic importance, and its exotic composition compared with the rock-forming minerals, pyrite has played a key role through the ages in developing ideas of how minerals and ore deposits form. During the last century, pyrite became an even more important mineral in discussions of ore genesis because it is also a key component of sediments. This led to conflicting theories of ore genesis, in which the ore minerals were formed in the sediments or introduced later, often by processes related to volcanism. The conflict between adherents of these theories continues to this day. Pyrite constituted a key, but sometimes uncomfortable, mineral in ancient theories of mineral formation. It was relatively common and often economically important. However, it contained sulfur as a key constituent and this contrasted it to many other common minerals and rocks in that this meant that pyrite could be changed by heating. Heating released sulfur from pyrite, leaving a residue of stony slag. The ancients also recognized sulfur as a special material since it occurred in solid, liquid, and gaseous form, rather like water. Any theory of mineral formation needed to explain how this protean element got into pyrite. This problem was compounded by the fact, discussed in Chapter 3, that for some unknown reason the ancients did not know that pyrite contained iron. Ancient theories of mineral formation divide into three categories: (a) the Genesis theory: that all minerals were formed by God during the creation of the Earth; (b) the Aristotelian theory: that all minerals were formed at depth in the Earth through the interactions of the four basic elements; and (c) the Alchemical theory: that minerals were formed from combinations of mercury and sulfur.
Estilos ABNT, Harvard, Vancouver, APA, etc.

Trabalhos de conferências sobre o assunto "Geology ; Ore deposits ; Silver ores"

1

Mizernaya, M., B. Dyachkov, A. Miroshnikova e A. Mizerny. "INDUSTRIAL TYPES OF GOLD DEPOSITS OF THE EAST KAZAKHSTAN". In GEOLINKS International Conference. SAIMA Consult Ltd, 2020. http://dx.doi.org/10.32008/geolinks2020/b1/v2/14.

Texto completo da fonte
Resumo:
The East Kazakhstan territory is the unique geologic province where a number of large-scale non-ferrous and gold deposits are concentrated [1]. Gold base metals (gold-containing) type is represented by gold containing sulphide complex deposits. It is characterized by many large-scale commercial deposits of copper, lead and zinc where gold as well as silver, cadmium, platinum, selenium and other elements are the associate component of copper-sulphide and sulphide complex deposits [2]. There are following ore types are distinguished: gold-listvenite type occurs in the Irtysh zone (Maraliha deposit); the gold-sulphide vein-disseminated type associated with island-arc, volcanogenic-carbonate-terrigenous formation С1v2-3 (Suzdalskoye, Baibura, Mirazh, Zhaima); gold-quartzite type is characterized by gold-quartzite-vein deposits in West Kalba zone (Kuludzhun, Sentash, Kazan-Chunkur and others); gold-arsenic-carbon-bearing type is presented by large, middle and small deposits of Bakyrchik’s group (Bakyrchik, Bolshevik, Gluboky Log and others). Last one is formed on middle-Hercynian collision ore-bearing level (С2-С3) [3]. Multiple-stage concentration of gold contributed to formation of very large deposits. Gold content ranges from is 0.2 to 60 g/t, average is 8-9 g/t. Considerable part of gold is found in micro- and nanoparticles, nanotubes containing Au, Ag, Pt, Pd, W, Mo, Sn, Y, Yb, Ta and other elements [
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia