Literatura científica selecionada sobre o tema "Geometrie combinatorie"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Geometrie combinatorie".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Artigos de revistas sobre o assunto "Geometrie combinatorie"

1

Dress, Andreas W. M., and Walter Wenzel. "Geometric algebra for combinatorial geometries." Advances in Mathematics 77, no. 1 (1989): 1–36. http://dx.doi.org/10.1016/0001-8708(89)90013-3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Annamalai, Chinnaraji. "Computation and Calculus for Combinatorial Geometric Series and Binomial Identities and Expansions." Journal of Engineering and Exact Sciences 8, no. 7 (2022): 14648–01. http://dx.doi.org/10.18540/jcecvl8iss7pp14648-01i.

Texto completo da fonte
Resumo:
Nowadays, the growing complexity of mathematical and computational modelling demands the simplicity of mathematical and computational equations for solving today’s scientific problems and challenges. This paper presents combinatorial geometric series, innovative binomial coefficients, combinatorial equations, binomial expansions, calculus with combinatorial geometric series, and innovative binomial theorems. Combinatorics involves integers, factorials, binomial coefficients, discrete mathematics, and theoretical computer science for finding solutions to the problems in computing and engineerin
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Biggs, N. L. "GEOMETRIC ALGORITHMS AND COMBINATORIAL OPTIMIZATION: (Algorithms and Combinatorics 2)." Bulletin of the London Mathematical Society 22, no. 2 (1990): 204–5. http://dx.doi.org/10.1112/blms/22.2.204.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Rau, A. R. P. "Symmetries and Geometries of Qubits, and Their Uses." Symmetry 13, no. 9 (2021): 1732. http://dx.doi.org/10.3390/sym13091732.

Texto completo da fonte
Resumo:
The symmetry SU(2) and its geometric Bloch Sphere rendering have been successfully applied to the study of a single qubit (spin-1/2); however, the extension of such symmetries and geometries to multiple qubits—even just two—has been investigated far less, despite the centrality of such systems for quantum information processes. In the last two decades, two different approaches, with independent starting points and motivations, have been combined for this purpose. One approach has been to develop the unitary time evolution of two or more qubits in order to study quantum correlations; by exploit
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Grünbaum, Branko. "Geometric Realization of Some Triangle-Free Combinatorial Configurations." ISRN Geometry 2012 (July 9, 2012): 1–10. http://dx.doi.org/10.5402/2012/560760.

Texto completo da fonte
Resumo:
The main purpose of this paper is to illustrate the mutual benefit to combinatorics and geometry by considering a topic from both sides. Al-Azemi and Betten enumerate the distinct combinatorial (223) configurations that are triangle free. They find a very large number of such configurations, but when taking into account the automorphism group of each, they find two cases in which there is only a single configuration. On the heuristic assumption that an object that is unique in some sense may well have other interesting properties, the geometric counterparts of these configurations were studied
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Annamalai, Chinnaraji. "COMBINATORIAL OPTIMIZED TECHNIQUE FOR COMPUTATION OF TRADITIONAL COMBINATIONS." jnanabha 50, no. 02 (2020): 128–31. http://dx.doi.org/10.58250/jnanabha.2020.50215.

Texto completo da fonte
Resumo:
This paper presents a computing method and models for optimizing the combination defined in combinatorics. The optimized combination has been derived from the iterative computation of multiple geometric series and summability by specialized approach. The optimized combinatorial technique has applications in science, engineering and management. In this paper, several properties and consequences on the innovative optimized combination has been introduced that are useful for scientific researchers who are solving scientific problems and meeting today’s challenges.
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Abe, Takuro, Graham Denham, Eva Maria Feichtner, and Gerhard Röhrle. "Arrangements, Matroids and Logarithmic Vector Fields." Oberwolfach Reports 21, no. 2 (2024): 1615–76. http://dx.doi.org/10.4171/owr/2024/29.

Texto completo da fonte
Resumo:
The focus of this workshop was on the ongoing interaction between geometric aspects of matroid theory with various directions in the study of hyperplane arrangements. A hyperplane arrangement is exactly a linear realization of a (loop-free, simple) matroid. While a matroid is a purely combinatorial object, though, an arrangement is associated with a range of algebraic and geometric constructions that connect closely with the combinatorics of matroids.The meeting brought together researchers involved with complementary angles on the subject, many of whom had not met before, so an important unde
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Annamalai, Chinnaraji, Junzo Watada, Said Broumi, and Vishnu Narayan Mishra. "COMBINATORIAL TECHNIQUE FOR OPTIMIZING THE COMBINATION." Journal of Engineering and Exact Sciences 6, no. 2 (2020): 0189–92. http://dx.doi.org/10.18540/jcecvl6iss2pp0189-0192.

Texto completo da fonte
Resumo:
This paper presents an innovative computing method and models for optimizing the combination defined in combinatorics. The optimized combination has been derived from the iterative computation of multiple geometric series and summability by specialized approach. The optimized combinatorial technique has applications in science, engineering and management. In this paper, several properties and consequences on the innovative optimized combination has been introduced that are useful for scientific researchers who are solving scientific problems and meeting today’s challenges.
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

CAVİCCHİOLİ, Alberto, and Fulvia SPAGGİARİ. "All Dehn Fillings of the Whitehead Link Complement are Tetrahedron Manifolds." International Electronic Journal of Geometry 15, no. 2 (2022): 192–201. http://dx.doi.org/10.36890/iejg.1102753.

Texto completo da fonte
Resumo:
In this paper we show that Dehn surgeries on the oriented components of the Whitehead link yield tetrahedron manifolds of Heegaard genus $\le 2$. As a consequence, the eight homogeneous Thurston 3-geometries are realized by tetrahedron manifolds of Heegaard genus $\le 2$. The proof is based on techniques of Combinatorial Group Theory, and geometric presentations of manifold fundamental groups.
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Kuijken, Elisabeth. "A Geometric Construction of Partial Geometries with a Hermitian Point Graph." European Journal of Combinatorics 23, no. 6 (2002): 701–6. http://dx.doi.org/10.1006/eujc.2002.0558.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Mais fontes

Teses / dissertações sobre o assunto "Geometrie combinatorie"

1

Lange, Carsten. "Combinatorial curvatures, group actions, and colourings: aspects of topological combinatorics." [S.l.] : [s.n.], 2005. http://deposit.ddb.de/cgi-bin/dokserv?idn=973473487.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Milicevic, Luka. "Topics in metric geometry, combinatorial geometry, extremal combinatorics and additive combinatorics." Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/273375.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Yoon, Young-jin. "Characterizations of Some Combinatorial Geometries." Thesis, University of North Texas, 1992. https://digital.library.unt.edu/ark:/67531/metadc277894/.

Texto completo da fonte
Resumo:
We give several characterizations of partition lattices and projective geometries. Most of these characterizations use characteristic polynomials. A geometry is non—splitting if it cannot be expressed as the union of two of its proper flats. A geometry G is upper homogeneous if for all k, k = 1, 2, ... , r(G), and for every pair x, y of flats of rank k, the contraction G/x is isomorphic to the contraction G/y. Given a signed graph, we define a corresponding signed—graphic geometry. We give a characterization of supersolvable signed graphs. Finally, we give the following characterization of non
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Salaün, Isabelle. "Deux problèmes de géométrie combinatoire : unimodalité de deux suites en théorie des matroïdes ; polyèdres : polyèdre régulier à vingt-quatre sommets de l'espace euclidien à quatre dimensions." Paris 6, 1988. http://www.theses.fr/1988PA066524.

Texto completo da fonte
Resumo:
On considère la suite des nombres de fermes de rang fixe (nombres de Whitney) et la suite des nombres d'indépendants de cardinal fixe d'un matroide. On obtient des résultats partiels concernant l'unimodalité conjecturée de ces suites (1972). On traite de matroides orientés. On étudie les polyèdres réguliers dans les espaces euclidiens a trois et quatre dimensions. On montre, en particulier, que le polyèdre régulier à vingt-quatre sommets de l'espace à quatre dimensions n'a qu'une classe d'orientations.
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Philippe, Eva. "Geometric realizations using regular subdivisions : construction of many polytopes, sweep polytopes, s-permutahedra." Electronic Thesis or Diss., Sorbonne université, 2024. http://www.theses.fr/2024SORUS079.

Texto completo da fonte
Resumo:
Cette thèse concerne trois problèmes de réalisations géométriques de structures combinatoires par des polytopes et des subdivisions polyédrales. Un polytope est l'enveloppe convexe d'un ensemble fini de points dans un espace euclidien R^d. Il est muni d'une structure combinatoire donnée par ses faces. Une subdivision est une collection de polytopes dont les faces s'intersectent correctement et dont l'union est convexe. Elle est régulière si elle peut être obtenue en prenant les faces inférieures d'un relèvement de ses sommets dans une dimension de plus.Nous présentons d'abord une nouvelle cons
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Borenstein, Evan. "Additive stucture, rich lines, and exponential set-expansion." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/29664.

Texto completo da fonte
Resumo:
Thesis (Ph.D)--Mathematics, Georgia Institute of Technology, 2009.<br>Committee Chair: Croot, Ernie; Committee Member: Costello, Kevin; Committee Member: Lyall, Neil; Committee Member: Tetali, Prasad; Committee Member: Yu, XingXing. Part of the SMARTech Electronic Thesis and Dissertation Collection.
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Hipp, James W. (James William) 1956. "The Maximum Size of Combinatorial Geometries Excluding Wheels and Whirls as Minors." Thesis, University of North Texas, 1989. https://digital.library.unt.edu/ark:/67531/metadc330849/.

Texto completo da fonte
Resumo:
We show that the maximum size of a geometry of rank n excluding the (q + 2)-point line, the 3-wheel W_3, and the 3-whirl W^3 as minor is (n - 1)q + 1, and geometries of maximum size are parallel connections of (q + 1)-point lines. We show that the maximum size of a geometry of rank n excluding the 5-point line, the 4-wheel W_4, and the 4-whirl W^4 as minors is 6n - 5, for n ≥ 3. Examples of geometries having rank n and size 6n - 5 include parallel connections of the geometries V_19 and PG(2,3).
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Bus, Norbert. "The use of geometric structures in graphics and optimization." Thesis, Paris Est, 2015. http://www.theses.fr/2015PESC1117/document.

Texto completo da fonte
Resumo:
Les données du monde réel ont manifestement une composante géométrique importante et suggère les patterns géométriques signifiants. Les méthodes qui utilisent la nature géométrique des données sont activement développés dans plusieurs domaines scientifiques, comme, par exemple, la géométrie algorithmique, la géométrie discrète, la synthèse d'images, la vision par ordinateur. Dans le travail présent, nous utilisons les structures géométriques afin de modéliser des algorithmes efficaces pour deux domaines, celui de synthèse d'images et de l'optimisation combinatoire. Dans la première partie il s
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Jambu, Michel. "Arrangements d'hyperplans : topologie, geometrie et combinatoire." Nantes, 1989. http://www.theses.fr/1989NANT2040.

Texto completo da fonte
Resumo:
La plupart des proprietes topologiques du complement d'une famille finie d'hyperplans de c#n sont codees dans le treillis des intersections de ces hyperplans: la cohomologie de ce complement est decrite a l'aide des circuits brises: les treillis associes aux arrangements de type fibre sont hyperresolubles et l'algebre d'holonomie de lie du complement admet une factorisation comme espace vectoriel, definie par une chaine maximale modulaire ce qui permet de donner une demonstration tres simple de la propriete lcs
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Ahlman, Ove. "Combinatorial geometries in model theory." Thesis, Uppsala University, Department of Mathematics, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-112523.

Texto completo da fonte
Resumo:
<p>Model theory and combinatorial pregeometries are closely related throughthe so called algebraic closure operator on strongly minimal sets. Thestudy of projective and ane pregeometries are especially interestingsince they have a close relation to vectorspaces. In this thesis we willsee how the relationship occur and how model theory can concludea very strong classi cation theorem which divides pregeometries withcertain properties into projective, ane and degenerate (trivial) cases.</p><br><p>Modellteori är ett ämne som är starkt relaterat till studien av kombinatoriska pregeometrier, detta g
Estilos ABNT, Harvard, Vancouver, APA, etc.
Mais fontes

Livros sobre o assunto "Geometrie combinatorie"

1

András, Szilárd. Elementary combinatorial geometry: Problems and solutions. Gil, 2007.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

service), SpringerLink (Online, ed. Geometric Etudes in Combinatorial Mathematics. Alexander Soifer 2010, 2010.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Batten, Lynn Margaret. Combinatorics of finite geometries. Cambridge University Press, 1986.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Neil, White, ed. Combinatorial geometries. Cambridge University Press, 1987.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

1945-, White Neil, ed. Combinatorial geometries. Cambridge University Press, 1987.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Orlik, Peter. Introduction to arrangements. Published for the Conference Board of the Mathematical Sciences by the American Mathematical Society, 1989.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Athanasiadis, Christos A., Victor V. Batyrev, Dimitrios I. Dais, Martin Henk, and Francisco Santos, eds. Algebraic and Geometric Combinatorics. American Mathematical Society, 2006. http://dx.doi.org/10.1090/conm/423.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Roux, Brigitte Le. Combinatorial Inference in Geometric Data Analysis. Chapman and Hall/CRC, Taylor & Francis Group, 2019.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

1911-, Ledermann Walter, and Vajda Steven 1901-, eds. Handbook of applicable mathematics. Wiley, 1985.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Volkmar, Welker, ed. Algebraic combinatorics: Lectures of a summer school, Nordfjordeid, Norway, June, 2003. Springer, 2007.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Mais fontes

Capítulos de livros sobre o assunto "Geometrie combinatorie"

1

Matoušek, Jiří. "Combinatorial Discrepancy." In Geometric Discrepancy. Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-642-03942-3_4.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Garrett, Paul. "Combinatorial Geometry." In Buildings and Classical Groups. Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-011-5340-9_15.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Herman, Jiří, Radan Kučera, and Jaromír Šimša. "Combinatorial Geometry." In Counting and Configurations. Springer New York, 2003. http://dx.doi.org/10.1007/978-1-4757-3925-1_3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Croft, Hallard T., Kenneth J. Falconer, and Richard K. Guy. "Combinatorial Geometry." In Unsolved Problems in Geometry. Springer New York, 1991. http://dx.doi.org/10.1007/978-1-4612-0963-8_6.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Hendricks, John S., Martyn T. Swinhoe, and Andrea Favalli. "Basic Concepts." In Monte Carlo N-Particle Simulations for Nuclear Detection and Safeguards. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-04129-7_2.

Texto completo da fonte
Resumo:
AbstractThis guide for MCNP students and practitioners begins with the simplest possible example: neutrons in a single spherical surface void sphere. Examples are provided for running MCNP and plotting its geometries. Modifications to the starting geometry demonstrate the full combinatorial solid geometry capability of MCNP. Further problem input examples explain materials capabilities and physics options. Standard source capabilities enable modeling of almost any radiation particle source. Output tally and plotting options provide a full description of physical processes in a problem and what
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Miller, Ezra, and Victor Reiner. "What is geometric combinatorics?—An overview of the graduate summer school." In Geometric Combinatorics. American Mathematical Society, 2007. http://dx.doi.org/10.1090/pcms/013/01.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Barvinok, Alexander. "Lattice points, polyhedra, and complexity." In Geometric Combinatorics. American Mathematical Society, 2007. http://dx.doi.org/10.1090/pcms/013/02.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Fomin, Sergey, and Nathan Reading. "Root systems and generalized associahedra." In Geometric Combinatorics. American Mathematical Society, 2007. http://dx.doi.org/10.1090/pcms/013/03.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Forman, Robin. "Topics in combinatorial differential topology and geometry." In Geometric Combinatorics. American Mathematical Society, 2007. http://dx.doi.org/10.1090/pcms/013/04.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Haiman, Mark, and Alexander Woo. "Geometry of 𝑞 and 𝑞,𝑡-analogs in combinatorial enumeration." In Geometric Combinatorics. American Mathematical Society, 2007. http://dx.doi.org/10.1090/pcms/013/05.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Trabalhos de conferências sobre o assunto "Geometrie combinatorie"

1

Veljan, Darko. "Two inequalities: a geometric and a combinatorial." In 2nd Croatian Combinatorial Days. University of Zagreb Faculty of Civil Engineering, 2019. http://dx.doi.org/10.5592/co/ccd.2018.11.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Protrka, Ivana. "An Invitation to Combinatorial Tropical Geometry." In 1st Croatian Combinatorial Days. University of Zagreb Faculty of Civil Engineering, 2017. http://dx.doi.org/10.5592/co/ccd.2016.05.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Lee, Jinhwi, Jungtaek Kim, Hyunsoo Chung, Jaesik Park, and Minsu Cho. "Learning to Assemble Geometric Shapes." In Thirty-First International Joint Conference on Artificial Intelligence {IJCAI-22}. International Joint Conferences on Artificial Intelligence Organization, 2022. http://dx.doi.org/10.24963/ijcai.2022/146.

Texto completo da fonte
Resumo:
Assembling parts into an object is a combinatorial problem that arises in a variety of contexts in the real world and involves numerous applications in science and engineering. Previous related work tackles limited cases with identical unit parts or jigsaw-style parts of textured shapes, which greatly mitigate combinatorial challenges of the problem. In this work, we introduce the more challenging problem of shape assembly, which involves textureless fragments of arbitrary shapes with indistinctive junctions, and then propose a learning-based approach to solving it. We demonstrate the effectiv
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Bretto, Alain, Hocine Cherifi, and Bernard Laget. "Combinatoric digital geometry and image processing." In SPIE's 1996 International Symposium on Optical Science, Engineering, and Instrumentation, edited by Robert A. Melter, Angela Y. Wu, and Longin J. Latecki. SPIE, 1996. http://dx.doi.org/10.1117/12.251811.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Břehovský, Jiří, Daniela Bímová, and Petra Pirklová. "Using GeoGebra for solving geometric-combinatorial problems." In “TOPICAL ISSUES OF THERMOPHYSICS, ENERGETICS AND HYDROGASDYNAMICS IN THE ARCTIC CONDITIONS”: Dedicated to the 85th Birthday Anniversary of Professor E. A. Bondarev. AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0100871.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

BOEIRA DORNELAS, BIANCA, and FRANCESCO MATUCCI. "Introduction to Combinatorial and Geometric Group Theory." In XXV Congresso de Iniciação Cientifica da Unicamp. Galoa, 2017. http://dx.doi.org/10.19146/pibic-2017-79172.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Gao, Limin, Xiaoming Deng, Lei Gao, Ruiyu Li, Ruihui Zeng, and Cunliang Liu. "Multi-Objective Combinatorial Optimization Design Method for the Compressor Splitter." In ASME Turbo Expo 2015: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/gt2015-44004.

Texto completo da fonte
Resumo:
Considering the present backward situation of the compressor splitter designing level, a multi-objective Combinatorial Optimization Design method is put forward for the splitter design consisting of three core components: the CST parameterized method, the Design of Experiment and the ASA optimization algorithm. In the whole optimization design process, the CST parameterized method is developed for the complex geometry modeling and geometric samples generating of splitter. The Design of Experiment is taken used to qualitatively analyze the multiple design variables and adjust their number and s
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Bombelli, L. "A combinatorial approach to discrete geometry." In A CENTURY OF RELATIVITY PHYSICS: ERE 2005; XXVIII Spanish Relativity Meeting. AIP, 2006. http://dx.doi.org/10.1063/1.2218222.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Carter, Martha A., and Mark E. Oxley. "Combinatorial geometry and V-C dimension." In SPIE's 1996 International Symposium on Optical Science, Engineering, and Instrumentation, edited by H. John Caulfield and Su-Shing Chen. SPIE, 1996. http://dx.doi.org/10.1117/12.258134.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Basu, Saugata. "Combinatorial complexity in O-minimal geometry." In the thirty-ninth annual ACM symposium. ACM Press, 2007. http://dx.doi.org/10.1145/1250790.1250798.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Relatórios de organizações sobre o assunto "Geometrie combinatorie"

1

Chen, W. Y. C., and J. D. Louck. Combinatorics, geometry, and mathematical physics. Office of Scientific and Technical Information (OSTI), 1998. http://dx.doi.org/10.2172/674871.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Burns, T. J. ORGBUG -- A windows-based combinatorial geometry debugger. Office of Scientific and Technical Information (OSTI), 1993. http://dx.doi.org/10.2172/7368450.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Burns, T. J. ORGBUG -- A windows-based combinatorial geometry debugger. Office of Scientific and Technical Information (OSTI), 1993. http://dx.doi.org/10.2172/10170388.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Burns, T. J. CGVIEW: A program to generate isometric and perspective views of combinatorial geometries. Office of Scientific and Technical Information (OSTI), 1992. http://dx.doi.org/10.2172/5065672.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Burns, T. J. CGVIEW: A program to generate isometric and perspective views of combinatorial geometries. Office of Scientific and Technical Information (OSTI), 1992. http://dx.doi.org/10.2172/10158989.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Cullen, D. E. TART96: a coupled neutron-photon 3-D, combinatorial geometry Monte Carlo transport code. Office of Scientific and Technical Information (OSTI), 1996. http://dx.doi.org/10.2172/461393.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Cullen, D. E. TART97 a coupled neutron-photon 3-D, combinatorial geometry Monte Carlo transport code. Office of Scientific and Technical Information (OSTI), 1997. http://dx.doi.org/10.2172/572762.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Cullen, D. E. TART98 a coupled neutron-photon 3-D, combinatorial geometry time dependent Monte Carlo Transport code. Office of Scientific and Technical Information (OSTI), 1998. http://dx.doi.org/10.2172/8435.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Cullen, D. E. TART 2000: A Coupled Neutron-Photon, 3-D, Combinatorial Geometry, Time Dependent, Monte Carlo Transport Code. Office of Scientific and Technical Information (OSTI), 2000. http://dx.doi.org/10.2172/802092.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Cullen, D. TART2012 An Overview of A Coupled Neutron Photon 3-D, Combinatorial Geometry Time Dependent Monte Carlo Transport Code. Office of Scientific and Technical Information (OSTI), 2012. http://dx.doi.org/10.2172/1056631.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!