Artigos de revistas sobre o tema "Hafnium oxide layers"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Hafnium oxide layers".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Neuber, Markus, Maximilian Walter Lederer, Konstantin Mertens, Thomas Kämpfe, Malte Czernohorsky e Konrad Seidel. "Pyroelectric and Ferroelectric Properties of Hafnium Oxide Doped with Si via Plasma Enhanced ALD". Crystals 12, n.º 8 (9 de agosto de 2022): 1115. http://dx.doi.org/10.3390/cryst12081115.
Texto completo da fonteBorowicz, P., A. Taube, W. Rzodkiewicz, M. Latek e S. Gierałtowska. "Raman Spectra of High-κDielectric Layers Investigated with Micro-Raman Spectroscopy Comparison with Silicon Dioxide". Scientific World Journal 2013 (2013): 1–6. http://dx.doi.org/10.1155/2013/208081.
Texto completo da fonteLederer, Maximilian, Tobias Vogel, Thomas Kämpfe, Nico Kaiser, Eszter Piros, Ricardo Olivo, Tarek Ali et al. "Heavy ion irradiation induced phase transitions and their impact on the switching behavior of ferroelectric hafnia". Journal of Applied Physics 132, n.º 6 (14 de agosto de 2022): 064102. http://dx.doi.org/10.1063/5.0098953.
Texto completo da fonteKappa, Mathias, Markus Ratzke e Jürgen Reif. "Pulsed Laser Deposition of Hafnium Oxide on Silicon". Solid State Phenomena 108-109 (dezembro de 2005): 723–28. http://dx.doi.org/10.4028/www.scientific.net/ssp.108-109.723.
Texto completo da fonteLederer, Maximilian, Konstantin Mertens, Ricardo Olivo, Kati Kühnel, David Lehninger, Tarek Ali, Thomas Kämpfe, Konrad Seidel e Lukas M. Eng. "Substrate-dependent differences in ferroelectric behavior and phase diagram of Si-doped hafnium oxide". Journal of Materials Research 36, n.º 21 (2 de novembro de 2021): 4370–78. http://dx.doi.org/10.1557/s43578-021-00415-y.
Texto completo da fonteKahro, Tauno, Kristina Raudonen, Joonas Merisalu, Aivar Tarre, Peeter Ritslaid, Aarne Kasikov, Taivo Jõgiaas et al. "Nanostructures Stacked on Hafnium Oxide Films Interfacing Graphene and Silicon Oxide Layers as Resistive Switching Media". Nanomaterials 13, n.º 8 (9 de abril de 2023): 1323. http://dx.doi.org/10.3390/nano13081323.
Texto completo da fontePan, Yaru, Xihui Liang, Zhihao Liang, Rihui Yao, Honglong Ning, Jinyao Zhong, Nanhong Chen, Tian Qiu, Xiaoqin Wei e Junbiao Peng. "Application of Solution Method to Prepare High Performance Multicomponent Oxide Thin Films". Membranes 12, n.º 7 (22 de junho de 2022): 641. http://dx.doi.org/10.3390/membranes12070641.
Texto completo da fonteIhlefeld, Jon F., Samantha T. Jaszewski e Shelby S. Fields. "A Perspective on ferroelectricity in hafnium oxide: Mechanisms and considerations regarding its stability and performance". Applied Physics Letters 121, n.º 24 (12 de dezembro de 2022): 240502. http://dx.doi.org/10.1063/5.0129546.
Texto completo da fonteKim, Dae-Cheol, e Young-Geun Ha. "Self-Assembled Hybrid Gate Dielectrics for Ultralow Voltage of Organic Thin-Film Transistors". Journal of Nanoscience and Nanotechnology 21, n.º 3 (1 de março de 2021): 1761–65. http://dx.doi.org/10.1166/jnn.2021.19083.
Texto completo da fonteDementev, P. A., e E. V. Dementeva. "Kelvin-probe microscopy as a technique of estimation of the charge traps saturation time". Journal of Physics: Conference Series 2103, n.º 1 (1 de novembro de 2021): 012067. http://dx.doi.org/10.1088/1742-6596/2103/1/012067.
Texto completo da fonteRomanowska, Jolanta, Maryana Zagula-Yavorska e Łukasz Kolek. "Oxidation Resistance of Modified Aluminide Coatings". MATEC Web of Conferences 253 (2019): 03006. http://dx.doi.org/10.1051/matecconf/201925303006.
Texto completo da fonteXu, Yuan-Dong, Yan-Ping Jiang, Xin-Gui Tang, Qiu-Xiang Liu, Zhenhua Tang, Wen-Hua Li, Xiao-Bin Guo e Yi-Chun Zhou. "Enhancement of Resistive Switching Performance in Hafnium Oxide (HfO2) Devices via Sol-Gel Method Stacking Tri-Layer HfO2/Al-ZnO/HfO2 Structures". Nanomaterials 13, n.º 1 (22 de dezembro de 2022): 39. http://dx.doi.org/10.3390/nano13010039.
Texto completo da fonteYu, J. J., Q. Fang, J. Y. Zhang, Z. M. Wang e I. W. Boyd. "Hafnium oxide layers derived by photo-assisted sol–gel processing". Applied Surface Science 208-209 (março de 2003): 676–81. http://dx.doi.org/10.1016/s0169-4332(02)01424-1.
Texto completo da fonteLavrenko, V. A., V. N. Talash, M. Desmaison-Brut e Yu B. Rudenko. "Protective oxide layers formed during electrochemical oxidation of hafnium carbide". Powder Metallurgy and Metal Ceramics 48, n.º 9-10 (setembro de 2009): 595–99. http://dx.doi.org/10.1007/s11106-010-9173-0.
Texto completo da fonteSiket, Christian M., Maria Bendova, Cezarina Cela Mardare, Jaromir Hubalek, Siegfried Bauer, Achim Walter Hassel e Andrei Ionut Mardare. "Interfacial Oxide Formation during Anodization of Hafnium/Aluminium Superimposed Layers". Electrochimica Acta 178 (outubro de 2015): 344–52. http://dx.doi.org/10.1016/j.electacta.2015.07.039.
Texto completo da fonteReznik, A. A., A. A. Rezvanov e S. S. Zyuzin. "Buffer Layers for Nonvolatile Ferroelectric Memory Based on Hafnium Oxide". Russian Microelectronics 52, S1 (dezembro de 2023): S38—S43. http://dx.doi.org/10.1134/s1063739723600486.
Texto completo da fonteFadeev, A. V., A. V. Myakon’kikh, E. A. Smirnova, S. G. Simakin e K. V. Rudenko. "Mechanisms of the Redistribution of Carbon Contamination in Films Formed by Atomic Layer Deposition". Микроэлектроника 52, n.º 4 (1 de julho de 2023): 336–44. http://dx.doi.org/10.31857/s0544126923700412.
Texto completo da fonteŁaszcz, Adam, Andrzej Czerwiński, Jacek Ratajczak, Andrzej Taube, Sylwia Gierałtowska, Ania Piotrowska e Jerzy Kątcki. "Study of Oxides Formed in HfO2/Si Structure for High-k Dielectric Applications". Solid State Phenomena 186 (março de 2012): 78–81. http://dx.doi.org/10.4028/www.scientific.net/ssp.186.78.
Texto completo da fonteRamesh, L., S. Moparthi, P. K. Tiwari, V. R. Samoju e G. K. Saramekala. "Investigation of the Electrical Properties of Double-Gate Dual-Active-Layer (DG-DAL) Thin-Film Transistor (TFT) with HfO-=SUB=-2-=/SUB=-/La-=SUB=-2-=/SUB=-O-=SUB=-3-=/SUB=-/HfO-=SUB=-2-=/SUB=- (HLH) Sandwich Gate Dielectrics". Физика и техника полупроводников 54, n.º 10 (2020): 1098. http://dx.doi.org/10.21883/ftp.2020.10.49949.9395.
Texto completo da fonteBriggs, B. D., S. M. Bishop, K. D. Leedy e N. C. Cady. "Characterization of hafnium oxide resistive memory layers deposited on copper by atomic layer deposition". Thin Solid Films 562 (julho de 2014): 519–24. http://dx.doi.org/10.1016/j.tsf.2014.04.084.
Texto completo da fonteMroczyński, Robert, Magdalena Szymańska e Wojciech Głuszewski. "Reactive magnetron sputtered hafnium oxide layers for nonvolatile semiconductor memory devices". Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena 33, n.º 1 (janeiro de 2015): 01A113. http://dx.doi.org/10.1116/1.4906090.
Texto completo da fonteKalam, Kristjan, Markus Otsus, Jekaterina Kozlova, Aivar Tarre, Aarne Kasikov, Raul Rammula, Joosep Link et al. "Memory Effects in Nanolaminates of Hafnium and Iron Oxide Films Structured by Atomic Layer Deposition". Nanomaterials 12, n.º 15 (28 de julho de 2022): 2593. http://dx.doi.org/10.3390/nano12152593.
Texto completo da fonteLee, Donghyeon, Pyungho Choi, Areum Park, Woojin Jeon, Donghee Choi, Sangmin Lee e Byoungdeog Choi. "Hafnium Incorporation in InZnO Thin Film Transistors as a Carrier Suppressor". Journal of Nanoscience and Nanotechnology 20, n.º 11 (1 de novembro de 2020): 6675–78. http://dx.doi.org/10.1166/jnn.2020.18761.
Texto completo da fonteFuchs, Christopher, Lena Fürst, Hartmut Buhmann, Johannes Kleinlein e Laurens W. Molenkamp. "Overlapping top gate electrodes based on low temperature atomic layer deposition for nanoscale ambipolar lateral junctions". Nano Futures 8, n.º 2 (28 de maio de 2024): 025001. http://dx.doi.org/10.1088/2399-1984/ad4c33.
Texto completo da fonteGolosov, D. A., N. Vilya, S. М. Zavadski, S. N. Melnikov, A. V. Avramchuk, М. М. Grekhov, N. I. Kargin e I. V. Komissarov. "Influence of film thickness on the dielectric characteristics of hafnium oxide layers". Thin Solid Films 690 (novembro de 2019): 137517. http://dx.doi.org/10.1016/j.tsf.2019.137517.
Texto completo da fonteКостюк, Геннадий Игоревич, e Ирина Владимировна Кантемир. "НАУКОВІ ОСНОВИ СТВОРЕННЯ ВИСОКОЕНТРОПІЙНИХ КАРБІДНИХ ТА ОКСИДНИХ НАНОПОКРИТТІВ НА НАДТВЕРДОМУ МАТЕРІАЛІ КОРТИНИТ". Aerospace Technic and Technology, n.º 3 (1 de agosto de 2017): 77–84. http://dx.doi.org/10.32620/aktt.2017.3.05.
Texto completo da fonteMazurak, Andrzej, Robert Mroczyński, David Beke e Adam Gali. "Silicon-Carbide (SiC) Nanocrystal Technology and Characterization and Its Applications in Memory Structures". Nanomaterials 10, n.º 12 (29 de novembro de 2020): 2387. http://dx.doi.org/10.3390/nano10122387.
Texto completo da fonteIshizaki, Hiroki. "Growth of HfSixOy/ HfO2 Thin Film on Si Substrate by Microwave Generated Remote Plasma Assisted Atomic Layer Deposition Techniques". MRS Advances 1, n.º 4 (2016): 311–16. http://dx.doi.org/10.1557/adv.2016.144.
Texto completo da fonteChae, Kisung, Andrew C. Kummel e Kyeongjae Cho. "Hafnium–zirconium oxide interface models with a semiconductor and metal for ferroelectric devices". Nanoscale Advances 3, n.º 16 (2021): 4750–55. http://dx.doi.org/10.1039/d1na00230a.
Texto completo da fonteNakagawa, Hiroshi, Akio Ohta, Fumito Takeno, Satoru Nagamachi, Hideki Murakami, Seiichiro Higashi e Seiichi Miyazaki. "Characterization of Interfacial Oxide Layers in Heterostructures of Hafnium Oxides Formed on NH3-Nitrided Si(100)". Japanese Journal of Applied Physics 43, n.º 11B (15 de novembro de 2004): 7890–94. http://dx.doi.org/10.1143/jjap.43.7890.
Texto completo da fonteGuzmán-Mendoza, J., D. Albarrán-Arreguín, O. Alvarez-Fragoso, M. A. Alvarez-Perez, C. Falcony e M. García-Hipólito. "Photoluminescent characteristics of hafnium oxide layers activated with trivalent terbium (HfO2:Tb+3)". Radiation Effects and Defects in Solids 162, n.º 10-11 (outubro de 2007): 723–29. http://dx.doi.org/10.1080/10420150701482519.
Texto completo da fonteMozalev, Alexander, Maria Bendova, Francesc Gispert-Guirado e Eduard Llobet. "Hafnium-Oxide 3-D Nanofilms via the Anodizing of Al/Hf Metal Layers". Chemistry of Materials 30, n.º 8 (29 de março de 2018): 2694–708. http://dx.doi.org/10.1021/acs.chemmater.8b00188.
Texto completo da fontePiao, Shang Hao, Hyeonju Lee, Jaehoon Park e Hyoung Jin Choi. "Poly(4-vinylphenol-co-methyl methacrylate)/Hafnium Oxide Nanocomposite Gate Insulators for Organic Thin-Film Transistors". Journal of Nanoscience and Nanotechnology 20, n.º 7 (1 de julho de 2020): 4188–92. http://dx.doi.org/10.1166/jnn.2020.17567.
Texto completo da fonteWang, Chi-Chieh, Cheng-Fu Wang, Meng-Chi Li, Li-Chen Su e Chien-Cheng Kuo. "Inhibition of Anti-Reflection Film Cracks on Plastic Substrates Using Nanolaminate Layer Deposition in Plasma-Enhanced Atomic Layer Deposition". Technologies 13, n.º 1 (28 de dezembro de 2024): 11. https://doi.org/10.3390/technologies13010011.
Texto completo da fonteIbrahim, Omar A. "Organic Field Effect Transistor Based on P3HT with Two Different Gate Dielectrics". BASRA JOURNAL OF SCIENCE 39, n.º 2 (1 de abril de 2021): 234–42. http://dx.doi.org/10.29072/basjs.202125.
Texto completo da fonteHan, Dong-Suk, Jae-Hyung Park, Min-Soo Kang, Duck-Kyun Choi e Jong-Wan Park. "Highly stable hafnium–tin–zinc oxide thin film transistors with stacked bilayer active layers". Current Applied Physics 15, n.º 2 (fevereiro de 2015): 94–97. http://dx.doi.org/10.1016/j.cap.2014.11.007.
Texto completo da fonteShah, Deb Kumar, Devendra KC, Ahmad Umar, Hassan Algadi, Mohammad Shaheer Akhtar e O.-Bong Yang. "Influence of Efficient Thickness of Antireflection Coating Layer of HfO2 for Crystalline Silicon Solar Cell". Inorganics 10, n.º 10 (12 de outubro de 2022): 171. http://dx.doi.org/10.3390/inorganics10100171.
Texto completo da fontePereira, Luís, Pedro Barquinha, Elvira Fortunato e Rodrigo Martins. "Electrical Performances of Low Temperature Annealed Hafnium Oxide Deposited at Room Temperature". Materials Science Forum 514-516 (maio de 2006): 58–62. http://dx.doi.org/10.4028/www.scientific.net/msf.514-516.58.
Texto completo da fonteLo Nigro, Raffaella, Patrick Fiorenza, Giuseppe Greco, Emanuela Schilirò e Fabrizio Roccaforte. "Structural and Insulating Behaviour of High-Permittivity Binary Oxide Thin Films for Silicon Carbide and Gallium Nitride Electronic Devices". Materials 15, n.º 3 (22 de janeiro de 2022): 830. http://dx.doi.org/10.3390/ma15030830.
Texto completo da fonteGlowka, Karsten, Maciej Zubko, Paweł Świec, Krystian Prusik, Magdalena Szklarska, Dariusz Chrobak, János L. Lábár e Danuta Stróż. "Influence of Molybdenum on the Microstructure, Mechanical Properties and Corrosion Resistance of Ti20Ta20Nb20(ZrHf)20−xMox (Where: x = 0, 5, 10, 15, 20) High Entropy Alloys". Materials 15, n.º 1 (5 de janeiro de 2022): 393. http://dx.doi.org/10.3390/ma15010393.
Texto completo da fonteBerger, Steffen, Florian Jakubka e Patrik Schmuki. "Self-Ordered Hexagonal Nanoporous Hafnium Oxide and Transition to Aligned HfO[sub 2] Nanotube Layers". Electrochemical and Solid-State Letters 12, n.º 7 (2009): K45. http://dx.doi.org/10.1149/1.3117253.
Texto completo da fonteGarcía-Hipólito, M., U. Caldiño, O. Alvarez-Fragoso, M. A. Alvarez-Pérez, R. Martínez-Martínez e C. Falcony. "Violet-blue luminescence from hafnium oxide layers doped with CeCl3prepared by the spray pyrolysis process". physica status solidi (a) 204, n.º 7 (julho de 2007): 2355–61. http://dx.doi.org/10.1002/pssa.200622341.
Texto completo da fonteSialini, P., P. Sajdl, V. Havránek e V. Vrtílková. "Study of diffusion processes in the oxide layer of zirconium alloys". Koroze a ochrana materialu 60, n.º 1 (1 de março de 2016): 1–5. http://dx.doi.org/10.1515/kom-2016-0004.
Texto completo da fonteYan Ny Tan, W. K. Chim, Wee Kiong Choi, Moon Sig Joo e Byung Jin Cho. "Hafnium aluminum oxide as charge storage and blocking-oxide layers in SONOS-type nonvolatile memory for high-speed operation". IEEE Transactions on Electron Devices 53, n.º 4 (abril de 2006): 654–62. http://dx.doi.org/10.1109/ted.2006.870273.
Texto completo da fonteShakhno, Elena A., Quang D. Nguyen, Dmitry A. Sinev, Elizaveta V. Matvienko, Roman A. Zakoldaev e Vadim P. Veiko. "Laser Thermochemical High-Contrast Recording on Thin Metal Films". Nanomaterials 11, n.º 1 (30 de dezembro de 2020): 67. http://dx.doi.org/10.3390/nano11010067.
Texto completo da fonteZulkifli, Zikri, Norshamsuri Ali, Shaili Falina, Hiroshi Kawarada, Mohamed Fauzi Packeer Mohamed e Mohd Syamsul. "Comparison of the Electrical Performance of AlN and HfO<sub>2 </sub>Passivation Layer in AlGaN/GaN HEMT". Key Engineering Materials 947 (31 de maio de 2023): 21–26. http://dx.doi.org/10.4028/p-445y05.
Texto completo da fonteSugawara, Takuya, Yasuhiro Oshima, Raghavasimhan Sreenivasan e Paul C. McIntyre. "Electrical properties of germanium/metal-oxide gate stacks with atomic layer deposition grown hafnium-dioxide and plasma-synthesized interface layers". Applied Physics Letters 90, n.º 11 (12 de março de 2007): 112912. http://dx.doi.org/10.1063/1.2472197.
Texto completo da fonteMartínez-Martínez, R., M. García, A. Speghini, M. Bettinelli, C. Falcony e U. Caldiño. "Blue–green–red luminescence from CeCl3- and MnCl2-doped hafnium oxide layers prepared by ultrasonic spray pyrolysis". Journal of Physics: Condensed Matter 20, n.º 39 (1 de setembro de 2008): 395205. http://dx.doi.org/10.1088/0953-8984/20/39/395205.
Texto completo da fonteTing, Guy G., Orb Acton, Hong Ma, Jae Won Ka e Alex K. Y. Jen. "Study on the Formation of Self-Assembled Monolayers on Sol−Gel Processed Hafnium Oxide as Dielectric Layers". Langmuir 25, n.º 4 (17 de fevereiro de 2009): 2140–47. http://dx.doi.org/10.1021/la802944n.
Texto completo da fonteHussin, H., N. Soin, M. F. Bukhori, S. Wan Muhamad Hatta e Y. Abdul Wahab. "Effects of Gate Stack Structural and Process Defectivity on High-kDielectric Dependence of NBTI Reliability in 32 nm Technology Node PMOSFETs". Scientific World Journal 2014 (2014): 1–13. http://dx.doi.org/10.1155/2014/490829.
Texto completo da fonte