Artigos de revistas sobre o tema "Heterogeneous membranes"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Heterogeneous membranes".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Strzelewicz, Anna, Monika Krasowska, and Michał Cieśla. "Lévy Flights Diffusion with Drift in Heterogeneous Membranes." Membranes 13, no. 4 (2023): 417. http://dx.doi.org/10.3390/membranes13040417.
Texto completo da fonteMagnone, Edoardo, Jae Yeon Hwang, Min Chang Shin, Xuelong Zhuang, Jeong In Lee, and Jung Hoon Park. "Al2O3-Based Hollow Fiber Membranes Functionalized by Nitrogen-Doped Titanium Dioxide for Photocatalytic Degradation of Ammonia Gas." Membranes 12, no. 7 (2022): 693. http://dx.doi.org/10.3390/membranes12070693.
Texto completo da fonteSeptiawan, Muhammad Ridwan, Dian Permana, Sitti Hadijah Sabarwati, La Ode Ahmad, and La Ode Ahmad Nur Ramadhan. "Functionalization of Chitosan with Maleic Anhydride for Proton Exchange Membrane." Indonesian Journal of Chemistry 18, no. 2 (2018): 313. http://dx.doi.org/10.22146/ijc.33141.
Texto completo da fonteZárybnická, Lucie, Eliška Stránská, Kristýna Janegová, and Barbora Vydrová. "The effect of 3D printing parameters on electrochemical properties of heterogeneous cation exchange membrane." Rapid Prototyping Journal 27, no. 8 (2021): 1538–47. http://dx.doi.org/10.1108/rpj-08-2020-0207.
Texto completo da fonteHosseini, S. M., Z. Ahmadi, M. Nemati, F. Parvizian, and S. S. Madaeni. "Electrodialysis heterogeneous ion exchange membranes modified by SiO2 nanoparticles: fabrication and electrochemical characterization." Water Science and Technology 73, no. 9 (2016): 2074–84. http://dx.doi.org/10.2166/wst.2016.030.
Texto completo da fonteKarpenko, Tatyana V., Vladislava V. Shramenko, and Nikolay Viktorovich Sheldeshov. "Influence of the nature of the organic acid salt on the currentvoltage characteristics and electrochemical impedance spectra of anion-exchange membranes." Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases 26, no. 3 (2024): 447–55. http://dx.doi.org/10.17308/kcmf.2024.26/12220.
Texto completo da fontePolak, Daniel, and Maciej Szwast. "Material and Process Tests of Heterogeneous Membranes Containing ZIF-8, SiO2 and POSS-Ph." Materials 15, no. 18 (2022): 6455. http://dx.doi.org/10.3390/ma15186455.
Texto completo da fonteBejanidze, Irina, Oleksandr Petrov, Volodymyr Pohrebennyk, et al. "Sorption of Organic Electrolytes and Surfactants from Natural Waters by Heterogeneous Membranes." Applied Sciences 10, no. 20 (2020): 7383. http://dx.doi.org/10.3390/app10207383.
Texto completo da fonteReigada, Ramon. "Electroporation of heterogeneous lipid membranes." Biochimica et Biophysica Acta (BBA) - Biomembranes 1838, no. 3 (2014): 814–21. http://dx.doi.org/10.1016/j.bbamem.2013.10.008.
Texto completo da fonteStenina, Irina A., and Andrey B. Yaroslavtsev. "Ionic Mobility in Ion-Exchange Membranes." Membranes 11, no. 3 (2021): 198. http://dx.doi.org/10.3390/membranes11030198.
Texto completo da fonteVasilieva, V. I., E. E. Meshcheryakova, I. V. Falina, N. A. Kononenko, M. A. Brovkina, and E. M. Akberova. "Influence of Heterogeneous Ion-Exchange Membranes Composition on Their Structure and Transport Properties." Мембраны и мембранные технологии 13, no. 3 (2023): 163–71. http://dx.doi.org/10.31857/s2218117223030082.
Texto completo da fonteSarapulova, Veronika, Ekaterina Nevakshenova, Kseniia Tsygurina, Valentina Ruleva, Anna Kirichenko, and Ksenia Kirichenko. "Short-Term Stability of Electrochemical Properties of Layer-by-Layer Coated Heterogeneous Ion Exchange Membranes." Membranes 13, no. 1 (2022): 45. http://dx.doi.org/10.3390/membranes13010045.
Texto completo da fonteKim, Hyunjung, Taeyoung Kim, Azilah Abd Aziz, et al. "Structural heterogeneity yet high similarity of the microbial community on reverse osmosis membrane-driven biofilms during seawater desalination." Environmental Science: Water Research & Technology 6, no. 11 (2020): 3066–79. http://dx.doi.org/10.1039/d0ew00366b.
Texto completo da fonteMaiygurova, Nina I., Frank Roessner, Tatiana V. Eliseeva, and Vladimir F. Selemenev. "SORPTION OF AMINO ACID AND CHANGES IN HYDRATION OF HETEROGENEOUS CATION- AND ANION-EXCHANGE MEMBRANES FUMASEP." IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENIY KHIMIYA KHIMICHESKAYA TEKHNOLOGIYA 59, no. 4 (2018): 73. http://dx.doi.org/10.6060/tcct.20165904.5336.
Texto completo da fontePolak, Daniel, and Maciej Szwast. "Analysis of the Influence of Process Parameters on the Properties of Homogeneous and Heterogeneous Membranes for Gas Separation." Membranes 12, no. 10 (2022): 1016. http://dx.doi.org/10.3390/membranes12101016.
Texto completo da fonteDüerkop, Dennis, Hartmut Widdecke, Carsten Schilde, Ulrich Kunz, and Achim Schmiemann. "Polymer Membranes for All-Vanadium Redox Flow Batteries: A Review." Membranes 11, no. 3 (2021): 214. http://dx.doi.org/10.3390/membranes11030214.
Texto completo da fonteStenina, Irina, Polina Yurova, Aslan Achoh, Victor Zabolotsky, Liang Wu, and Andrey Yaroslavtsev. "Improvement of Selectivity of RALEX-CM Membranes via Modification by Ceria with a Functionalized Surface." Polymers 15, no. 3 (2023): 647. http://dx.doi.org/10.3390/polym15030647.
Texto completo da fonteChen, Kaikai, Wei Zhao, Changfa Xiao, Hui Zhu, and Qiming Wang. "Membrane Fouling Mechanism of HTR-PVDF and HMR-PVDF Hollow Fiber Membranes in MBR System." Water 14, no. 16 (2022): 2576. http://dx.doi.org/10.3390/w14162576.
Texto completo da fonteHosseini, S. M., A. Seidypoor, M. Nemati, S. S. Madaeni, F. Parvizian, and E. Salehi. "Mixed matrix heterogeneous cation exchange membrane filled with clay nanoparticles: membranes’ fabrication and characterization in desalination process." Journal of Water Reuse and Desalination 6, no. 2 (2015): 290–300. http://dx.doi.org/10.2166/wrd.2015.064.
Texto completo da fonteLoza, Sergey, Natalia Loza, Nikita Kovalchuk, Nazar Romanyuk, and Julia Loza. "Comparative Study of Different Ion-Exchange Membrane Types in Diffusion Dialysis for the Separation of Sulfuric Acid and Nickel Sulfate." Membranes 13, no. 4 (2023): 396. http://dx.doi.org/10.3390/membranes13040396.
Texto completo da fonteBurganos, Vasilis N. "Membranes and Membrane Processes." MRS Bulletin 24, no. 3 (1999): 19–22. http://dx.doi.org/10.1557/s0883769400051861.
Texto completo da fonteGupta, Mayuri, and Donald F. Weaver. "Microsecond molecular dynamics studies of cholesterol-mediated myelin sheath degeneration in early Alzheimer's disease." Physical Chemistry Chemical Physics 24, no. 1 (2022): 222–39. http://dx.doi.org/10.1039/d1cp03844c.
Texto completo da fonteMIZUNO, Hiroki, and Hiroshi KOIBUCHI. "102 String Tension of Heterogeneous Membranes." Proceedings of Ibaraki District Conference 2012.20 (2012): 3–4. http://dx.doi.org/10.1299/jsmeibaraki.2012.20.3.
Texto completo da fonteGu, Ruo-Xu, Svetlana Baoukina, and D. Peter Tieleman. "Cholesterol Flip-Flop in Heterogeneous Membranes." Journal of Chemical Theory and Computation 15, no. 3 (2019): 2064–70. http://dx.doi.org/10.1021/acs.jctc.8b00933.
Texto completo da fonteVyas, Punita V., B. G. Shah, G. S. Trivedi, P. Ray, S. K. Adhikary, and R. Rangarajan. "Studies on heterogeneous cation-exchange membranes." Reactive and Functional Polymers 44, no. 2 (2000): 101–10. http://dx.doi.org/10.1016/s1381-5148(99)00084-x.
Texto completo da fontePandit, Sagar A., and H. Larry Scott. "Multiscale simulations of heterogeneous model membranes." Biochimica et Biophysica Acta (BBA) - Biomembranes 1788, no. 1 (2009): 136–48. http://dx.doi.org/10.1016/j.bbamem.2008.09.004.
Texto completo da fonteGuiver, Michael D., Paul Black, Chung M. Tam, and Yves Deslandes. "Functionalized polysulfone membranes by heterogeneous lithiation." Journal of Applied Polymer Science 48, no. 9 (1993): 1597–606. http://dx.doi.org/10.1002/app.1993.070480912.
Texto completo da fonteKorzhov, A. N., A. R. Achoh, S. A. Loza, E. N. Nosova, D. V. Davidov, and S. S. Melnikov. "Using a microheterogeneous model to assess the applicability of ion-exchange membranes in the process of reverse electrodialysis." Chimica Techno Acta 8, no. 2 (2021): 20218205. http://dx.doi.org/10.15826/chimtech.2021.8.2.05.
Texto completo da fonteKrausser, Johannes, Tuomas P. J. Knowles, and Anđela Šarić. "Physical mechanisms of amyloid nucleation on fluid membranes." Proceedings of the National Academy of Sciences 117, no. 52 (2020): 33090–98. http://dx.doi.org/10.1073/pnas.2007694117.
Texto completo da fontePark, Minseong, Byungjoon Bae, Taegeon Kim, Hyun S. Kum, and Kyusang Lee. "2D materials-assisted heterogeneous integration of semiconductor membranes toward functional devices." Journal of Applied Physics 132, no. 19 (2022): 190902. http://dx.doi.org/10.1063/5.0122768.
Texto completo da fonteSong, Chang Hyeon, Maulida Zakia, Geon Seok Lee, and Seong Il Yoo. "Scattering-mediated photothermal heating in plasmonic PES/Au membranes for heterogeneous catalysis." Materials Chemistry Frontiers 5, no. 5 (2021): 2425–33. http://dx.doi.org/10.1039/d0qm00746c.
Texto completo da fonteYin, Yiming, Wei Wang, Arun K. Kota, Song Zhao, and Tiezheng Tong. "Elucidating mechanisms of silica scaling in membrane distillation: effects of membrane surface wettability." Environmental Science: Water Research & Technology 5, no. 11 (2019): 2004–14. http://dx.doi.org/10.1039/c9ew00626e.
Texto completo da fonteZendehnam, Akbar, Mina Arabzadegan, Sayed Mohsen Hosseini, and Nasrin Robatmili. "Fabrication and modification of mixed matrix polyvinylchloride based heterogeneous cation exchange membrane by Ag nanolayer/plasma treatment: investigation of nanolayer deposition rate effect." Journal of Polymer Engineering 34, no. 4 (2014): 359–67. http://dx.doi.org/10.1515/polyeng-2013-0055.
Texto completo da fonteGuan, Zhangbin, Bingyu Wang, Yan Wang, Jing Chen, Chunyang Bao, and Qiang Zhang. "Iron-containing poly(ionic liquid) membranes: a heterogeneous Fenton reaction and enhanced anti-fouling ability." Polymer Chemistry 13, no. 1 (2022): 130–38. http://dx.doi.org/10.1039/d1py01345a.
Texto completo da fonteTsygurina, Kseniia, Olesya Rybalkina, Konstantin Sabbatovskiy, Evgeniy Kirichenko, Vladimir Sobolev, and Ksenia Kirichenko. "Layer-by-Layer Coating of MK-40 Heterogeneous Membrane with Polyelectrolytes Creates Samples with Low Electrical Resistance and Weak Generation of H+ and OH− Ions." Membranes 11, no. 2 (2021): 145. http://dx.doi.org/10.3390/membranes11020145.
Texto completo da fontePark, Cheol Oh, and Ji Won Rhim. "Performance of Membrane Capacitive Deionization Process Using Polyvinylidene Fluoride Heterogeneous Ion Exchange Membranes Part I : Preparation and Characterization of Heterogeneous Ion Exchange Membranes." Membrane Journal 27, no. 1 (2017): 84–91. http://dx.doi.org/10.14579/membrane_journal.2017.27.1.84.
Texto completo da fontePerreault, Véronique, Veronika Sarapulova, Ksenia Tsygurina, Natalia Pismenskaya, and Laurent Bazinet. "Understanding of Adsorption and Desorption Mechanisms of Anthocyanins and Proanthocyanidins on Heterogeneous and Homogeneous Cation-Exchange Membranes." Membranes 11, no. 2 (2021): 136. http://dx.doi.org/10.3390/membranes11020136.
Texto completo da fonteWalani, Nikhil, and Ashutosh Agrawal. "Stability of lipid membranes." Mathematics and Mechanics of Solids 22, no. 5 (2015): 1144–57. http://dx.doi.org/10.1177/1081286515617338.
Texto completo da fonteKudelin, D. V., and T. N. Nesiolovskaya. "Application of a computational and experimental method of analysis the complexly stressed state of rubber membranes for effective solutions for their production." Proceedings of the Voronezh State University of Engineering Technologies 83, no. 2 (2021): 230–36. http://dx.doi.org/10.20914/2310-1202-2021-2-230-236.
Texto completo da fonteBrovkina, M. A., N. A. Kutenko, and N. V. Loza. "Elecrtochemical Investigation of Heterogeneous Cation-Exchange Membranes Modified by Polyanilin in Solutions of Monovalent and Divalent Cations." Мембраны и мембранные технологии 13, no. 3 (2023): 205–20. http://dx.doi.org/10.31857/s2218117223030033.
Texto completo da fonteCouchman, J. R. "Heterogeneous distribution of a basement membrane heparan sulfate proteoglycan in rat tissues." Journal of Cell Biology 105, no. 4 (1987): 1901–16. http://dx.doi.org/10.1083/jcb.105.4.1901.
Texto completo da fonteGu, Qilin, Tze Chiang Albert Ng, Qiaomei Sun, et al. "Heterogeneous ZIF-L membranes with improved hydrophilicity and anti-bacterial adhesion for potential application in water treatment." RSC Advances 9, no. 3 (2019): 1591–601. http://dx.doi.org/10.1039/c8ra08758j.
Texto completo da fonteAbbas, Ghulam, Alfredo E. Cardenas, and Ron Elber. "The Structures of Heterogeneous Membranes and Their Interactions with an Anticancer Peptide: A Molecular Dynamics Study." Life 12, no. 10 (2022): 1473. http://dx.doi.org/10.3390/life12101473.
Texto completo da fonteVasil’eva, V. I., E. E. Meshcheryakova, O. I. Chernyshova, et al. "Transport and structural characteristics of heterogeneous ion-exchange membranes with varied dispersity of the ion exchanger." Membrany i membrannye tehnologii 14, no. 2 (2024): 143–54. http://dx.doi.org/10.31857/s2218117224020088.
Texto completo da fonteSadiq, Muhammad, Amir Naveed, Muhammad Arif, et al. "Geopolymerization: a promising technique for membrane synthesis." Materials Research Express 8, no. 11 (2021): 112002. http://dx.doi.org/10.1088/2053-1591/ac30e4.
Texto completo da fonteSchauer, Jan, Javier Llanos, Jan Žitka, Jaromír Hnát, and Karel Bouzek. "Cation-exchange membranes: Comparison of homopolymer, block copolymer, and heterogeneous membranes." Journal of Applied Polymer Science 124, S1 (2011): E66—E72. http://dx.doi.org/10.1002/app.35524.
Texto completo da fonteZhang, Yiming, Wei Zhang, and Luis F. Cházaro-Ruiz. "Porous PVDF/PANI ion-exchange membrane (IEM) modified by polyvinylpyrrolidone (PVP) and lithium chloride in the application of membrane capacitive deionisation (MCDI)." Water Science and Technology 77, no. 9 (2018): 2311–19. http://dx.doi.org/10.2166/wst.2018.152.
Texto completo da fonteBleha, Miroslav, and Věra Šumberová. "Equilibrium Sorptions in Heterogeneous Ion Exchange Membranes." Collection of Czechoslovak Chemical Communications 57, no. 9 (1992): 1905–14. http://dx.doi.org/10.1135/cccc19921905.
Texto completo da fonteKharina, Anastasiia, and Tatiana Eliseeva. "Tyrosine Amino Acid as a Foulant for the Heterogeneous Anion Exchange Membrane." Membranes 13, no. 10 (2023): 844. http://dx.doi.org/10.3390/membranes13100844.
Texto completo da fonteOren, Y., V. Freger, and C. Linder. "Highly conductive ordered heterogeneous ion-exchange membranes." Journal of Membrane Science 239, no. 1 (2004): 17–26. http://dx.doi.org/10.1016/j.memsci.2003.12.031.
Texto completo da fonte