Literatura científica selecionada sobre o tema "High pressure gas Adsorption"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "High pressure gas Adsorption".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "High pressure gas Adsorption"
Chen, Liwei, Mingzhen Zhao, Xiaohua Li e Yuan Liu. "Impact research of CH4 replacement with CO2 in hydrous coal under high pressure injection". Mining of Mineral Deposits 16, n.º 1 (30 de março de 2022): 121–26. http://dx.doi.org/10.33271/mining16.01.121.
Texto completo da fonteVermesse, J., D. Vidal e P. Malbrunot. "Gas Adsorption on Zeolites at High Pressure". Langmuir 12, n.º 17 (janeiro de 1996): 4190–96. http://dx.doi.org/10.1021/la950283m.
Texto completo da fonteGiacobbe, F. W. "A high‐pressure volumetric gas adsorption system". Review of Scientific Instruments 62, n.º 9 (setembro de 1991): 2186–92. http://dx.doi.org/10.1063/1.1142336.
Texto completo da fonteJia, Bao, Jyun-Syung Tsau e Reza Barati. "Different Flow Behaviors of Low-Pressure and High-Pressure Carbon Dioxide in Shales". SPE Journal 23, n.º 04 (30 de maio de 2018): 1452–68. http://dx.doi.org/10.2118/191121-pa.
Texto completo da fonteEkundayo, Jamiu M., Reza Rezaee e Chunyan Fan. "Measurement of gas contents in shale reservoirs – impact of gas density and implications for gas resource estimates". APPEA Journal 61, n.º 2 (2021): 606. http://dx.doi.org/10.1071/aj20177.
Texto completo da fonteHu, Ke, e Helmut Mischo. "Absolute adsorption and adsorbed volume modeling for supercritical methane adsorption on shale". Adsorption 28, n.º 1-2 (fevereiro de 2022): 27–39. http://dx.doi.org/10.1007/s10450-021-00350-8.
Texto completo da fonteLiu, Zhen, Qingbo Gu, He Yang, Jiangwei Liu, Guoliang Luan, Peng Hu e Zehan Yu. "Gas–Water Two-Phase Displacement Mechanism in Coal Fractal Structures Based on a Low-Field Nuclear Magnetic Resonance Experiment". Sustainability 15, n.º 21 (30 de outubro de 2023): 15440. http://dx.doi.org/10.3390/su152115440.
Texto completo da fonteWynnyk, Kyle G., Behnaz Hojjati, Payman Pirzadeh e Robert A. Marriott. "High-pressure sour gas adsorption on zeolite 4A". Adsorption 23, n.º 1 (18 de novembro de 2016): 149–62. http://dx.doi.org/10.1007/s10450-016-9841-6.
Texto completo da fonteGuo, Wenjing, Jie Liu, Fan Dong, Ru Chen, Jayanti Das, Weigong Ge, Xiaoming Xu e Huixiao Hong. "Deep Learning Models for Predicting Gas Adsorption Capacity of Nanomaterials". Nanomaterials 12, n.º 19 (27 de setembro de 2022): 3376. http://dx.doi.org/10.3390/nano12193376.
Texto completo da fonteCheng, De Zhu, Ai Ling Du e Ai Qin Du. "The Influence of Coal Adsorbing Methane and Carbon Dioxide on Gas Outburst". Advanced Materials Research 1049-1050 (outubro de 2014): 101–4. http://dx.doi.org/10.4028/www.scientific.net/amr.1049-1050.101.
Texto completo da fonteTeses / dissertações sobre o assunto "High pressure gas Adsorption"
Navaei, Milad. "Quartz crystal microbalance adsorption apparatus for high pressure gas adsorption measurements in nanomaterials". Thesis, Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/41057.
Texto completo da fonteDe, Angelis Giacomo. "Modeling of a differential volumetric system for high pressure gas adsorption". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/23313/.
Texto completo da fonteTang, Xu. "Measurements, Modeling and Analysis of High Pressure Gas Sorption in Shale and Coal for Unconventional Gas Recovery and Carbon Sequestration". Diss., Virginia Tech, 2017. http://hdl.handle.net/10919/74237.
Texto completo da fontePh. D.
Ceteroni, Ilaria. "High-pressure adsorption differential volumetric apparatus (HP-ADVA) for accurate equilibrium measurements". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/22274/.
Texto completo da fonteBorchardt, Lars, Winfried Nickel, Mirian Casco, Irena Senkovska, Volodymyr Bon, Dirk Wallacher, Nico Grimm, Simon Krause e Joaquín Silvestre-Albero. "Illuminating solid gas storage in confined spaces – methane hydrate formation in porous model carbons". Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-221847.
Texto completo da fonteBorchardt, Lars, Winfried Nickel, Mirian Casco, Irena Senkovska, Volodymyr Bon, Dirk Wallacher, Nico Grimm, Simon Krause e Joaquín Silvestre-Albero. "Illuminating solid gas storage in confined spaces – methane hydrate formation in porous model carbons". Royal Society of Chemistry, 2016. https://tud.qucosa.de/id/qucosa%3A30232.
Texto completo da fonteMinhas, Rizwan. "Spin Crossover (SCO) Hofmann clathrate with switchable property, for the design of a new gas storage/separation material". Electronic Thesis or Diss., Pau, 2024. http://www.theses.fr/2024PAUU3049.
Texto completo da fonteMetal Organic Frameworks (MOFs) have been identified in recent years as advanced alternatives for gas storage, molecular separations, sensing or catalysis, thanks to their remarkable host-guest properties and versatility. More recently, the combination of the ferrous spin-crossover (SCO) with MOFs has made it possible to obtain switchable porous architectures where the electron spin of the iron(II) metal centers can be controlled by different stimuli. This work focuses on one of these SCO MOFs, also called Hofmann clathrates, (FeNi[CN]4.Pyrazine) with a switchable property that is studied here for its gas storage and separation properties.This material is first synthesized using an environmentally friendly mixing of reagents, employing iron and nickel salts with pyrazine as the organic linker. The resulting microcrystalline powder is then characterized via different experimental techniques including nitrogen and argon porosimetry, thermogravimetry analysis (TGA), X-ray diffraction, scanning electron microscopy (SEM), and IR spectroscopy, thus confirming the successful synthesis of this material.One of the aims of this research was to design and construct a novel homemade volumetric setup to study the high-pressure adsorption of pure gases and mixtures allowing to simultaneously visualize the sample by means of a camera attached near the sapphire window of the measuring cell. First, high pressure (up to 7 MPa) pure gases (CO2, CH4 & N2) adsorption in (FeNi[CN]4.Pz) were conducted at various temperatures and results have shown an interesting structural flexibility of this MOF during CO2 adsorption, whatever the initial spin state of the material. These structural transitions upon CO2 adsorption were then observed using in-situ vibrational spectroscopy techniques: FTIR and Raman spectroscopy. Moreover, it was shown that the SCO property of this material is well associated with the changes in color of the sample itself showing that the combined adsorption/image analysis technique is a useful tool to investigate the SCO change due to adsorption for this type of material.The adsorption measurement of gas mixtures could be achieved by utilizing the same homemade manometric setup coupled with an IR gas analyzer. Experimental data demonstrated that (FeNi[CN]4.Pz) has a preferential adsorption for CO2 over CH4, making it a suitable candidate for CO2/CH4 separation in some conditions. It was shown that this preferential adsorption of CO2 is enhanced by the structural flexibility of the material.In addition to these experimental results, modeling of both equilibrium adsorption, kinetics of adsorption and selectivity was performed and compared to the measured properties.In summary, this thesis presents a comprehensive study of (FeNi[CN]4.Pz), highlighting its synthesis, characterization, structural flexibility, and exceptional performance in CO2/CH4 as well as CO2/N2 separations, highlighted by both experimental and theoretical approaches
Ngeleka, Tholakele Prisca. "Sulphur dioxide capture under fluidized bed combustion conditions / Tholakele Prisca Ngeleka". Thesis, North-West University, 2005. http://hdl.handle.net/10394/1416.
Texto completo da fonteThesis (M.Sc. (Chemical Engineering))--North-West University, Potchefstroom Campus, 2006.
Ngeleka, Tholakele Prisca. "An investigation into the feasibility of applying the watergas shift process to increase hydrogen production rate of the hybrid sulphur process / T.P. Ngeleka". Thesis, North-West University, 2008. http://hdl.handle.net/10394/4108.
Texto completo da fonteThesis (M.Sc. (Nuclear Engineering))--North-West University, Potchefstroom Campus, 2009.
Mutasim, Z. Z. "Separation of gas mixtures by pressure swing adsorption". Thesis, Swansea University, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.379811.
Texto completo da fonteLivros sobre o assunto "High pressure gas Adsorption"
United States. National Aeronautics and Space Administration., ed. Ceramic high pressure gas path seal. Lynn, MA: GE Aircraft Engines, 1987.
Encontre o texto completo da fonteL, Laganelli A., e NASA Glenn Research Center, eds. High pressure regenerative turbine engine: 21st century propulsion. [Cleveland, Ohio]: National Aeronautics and Space Administration, Glenn Research Center, 2001.
Encontre o texto completo da fonteL, Laganelli A., e NASA Glenn Research Center, eds. High pressure regenerative turbine engine: 21st century propulsion. [Cleveland, Ohio]: National Aeronautics and Space Administration, Glenn Research Center, 2001.
Encontre o texto completo da fonteHume, H. B. High-pressure gas-breakthrough apparatus and a procedure for determining the gas-breakthrough pressure of compacted clay. Pinawa, Manitoba: Whitshell Laboratories, 1997.
Encontre o texto completo da fontePerryman, Adrian Colin. An investigation of catalyst preparative methods and a study of high pressure co adsorption. Uxbridge: Brunel University, 1992.
Encontre o texto completo da fonteMorgan, G. J. High pressure gas permeation and liquid diffusion studies of Coflon and Tefzel thermoplastics. Austin, Tex: [Texas Research Institute, 1997.
Encontre o texto completo da fonteFalcini, Mark R. A. A study of gas phase ion chemistry using high pressure mass spectrometry. [s.l.]: typescript, 1992.
Encontre o texto completo da fonteJ, Locke Randy, e NASA Glenn Research Center, eds. Non-intrusive laser-induced imaging for speciation and patternation in high pressure gas turbine combustors. [Cleveland, Ohio]: National Aeronautics and Space Administration, Glenn Research Center, 1999.
Encontre o texto completo da fonteJ, Locke Randy, e NASA Glenn Research Center, eds. Non-intrusive laser-induced imaging for speciation and patternation in high pressure gas turbine combustors. [Cleveland, Ohio]: National Aeronautics and Space Administration, Glenn Research Center, 1999.
Encontre o texto completo da fonteJ, Locke Randy, e NASA Glenn Research Center, eds. Non-intrusive laser-induced imaging for speciation and patternation in high pressure gas turbine combustors. [Cleveland, Ohio]: National Aeronautics and Space Administration, Glenn Research Center, 1999.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "High pressure gas Adsorption"
Chou, Cheng-tung, Yu-Hau Shih, Yu-Jie Huang e Hong-sung Yang. "Separation of Carbon Dioxide from Synthesis Gas Containing Steam by Pressure Swing Adsorption at Mid-high Temperature". In Advances in Intelligent Systems and Computing, 157–69. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-11457-6_11.
Texto completo da fonteBräuer, P., M. Salem, M. v. Szombathely, M. Heuchel, P. Halting e M. Jaroniec. "Problems Associated with Thermodynamic Analysis of Gas-Solid Adsorption Isotherms Measured at High Pressures". In The Kluwer International Series in Engineering and Computer Science, 101–8. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4613-1375-5_11.
Texto completo da fonteMartin, J. R., C. F. Gottzmann, F. Notaro e H. A. Stewart. "Gas Separation by Pressure Swing Adsorption". In Advances in Cryogenic Engineering, 1071–86. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4613-2213-9_120.
Texto completo da fonteKuhs, W. F. "The High Pressure Crystallography of Gas Hydrates". In High-Pressure Crystallography, 475–94. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/978-1-4020-2102-2_29.
Texto completo da fonteSchröter, H. J., e H. Jüntgen. "Gas Separation by Pressure Swing Adsorption Using Carbon Molecular Sieves". In Adsorption: Science and Technology, 269–83. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-2263-1_15.
Texto completo da fonteZhang, Bao, Xiaotong Yu, Hongtao Jing, Xuesong Wang, Xiang Si e Dabin Fan. "Annular pressure evaluation of high temperature high pressure gas well". In Proceedings of the 2023 9th International Conference on Advances in Energy Resources and Environment Engineering (ICAESEE 2023), 443–50. Dordrecht: Atlantis Press International BV, 2024. http://dx.doi.org/10.2991/978-94-6463-415-0_47.
Texto completo da fonteSchmidt, Jürgen. "Sizing of High-Pressure Safety Valves for Gas Service". In Industrial High Pressure Applications, 369–89. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2012. http://dx.doi.org/10.1002/9783527652655.ch15.
Texto completo da fonteRiedel, Hermann. "Cavity Nucleation Assisted by Internal Gas Pressure". In Fracture at High Temperatures, 131–39. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-82961-1_9.
Texto completo da fontede Groot, J. J., e J. A. J. M. van Vliet. "Influence of a Buffer Gas on Discharge Properties". In The High-Pressure Sodium Lamp, 128–69. London: Macmillan Education UK, 1986. http://dx.doi.org/10.1007/978-1-349-09196-6_5.
Texto completo da fonteCzepirski, Leszek, Barbara Łaciak e Stanisław Hołda. "Analysis of High-Pressure Adsorption Equilibria and Kinetics". In The Kluwer International Series in Engineering and Computer Science, 219–26. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4613-1375-5_26.
Texto completo da fonteTrabalhos de conferências sobre o assunto "High pressure gas Adsorption"
Ojong, Ojong Elias, Preniyobo Diepriye Benibo, Fidelis Ibiang Abam e Silas Shamaye Samuel. "Enhancing Carbon (iv) Oxide Adsorption from Flue Gas Mixture at Elevated Temperature Using Composite of Nanoparticles". In Africa International Conference on Clean Energy and Energy Storage, 279–89. Switzerland: Trans Tech Publications Ltd, 2025. https://doi.org/10.4028/p-3cwdqg.
Texto completo da fonteChotchuangchutchaval, Thana, Pramot Wongnoopanao, Sarayut Kleepbua, Sitthichai Sarannat, Thossaporn Kaewwichit, Naratip Sangsai, Sittichai Limrungruengrat e Nathapong Sukhawipat. "High-Efficiency Oxygen Production Through Autotuned Pressure Swing Adsorption Technology". In 2024 Research, Invention, and Innovation Congress: Innovative Electricals and Electronics (RI2C), 334–38. IEEE, 2024. https://doi.org/10.1109/ri2c64012.2024.10784397.
Texto completo da fonteTsau, Jyun-Syung, Reza Ghahfarokhi Barati, Jose Zaghloul, Mubarak M. Alhajeri, Kyle Bradford e Brian Nicoud. "Experimental Investigation of High Pressure, High Temperature (HPHT) Adsorption of Methane and Natural Gas on Shale Gas Samples". In ADIPEC. SPE, 2022. http://dx.doi.org/10.2118/210981-ms.
Texto completo da fonteMURATA, K., e K. KANEKO. "DETERMINATION OF THE INTERFACE BETWEEN GAS AND ADSORBED PHASES IN HIGH PRESSURE GAS ADSORPTION". In Proceedings of the Second Pacific Basin Conference. WORLD SCIENTIFIC, 2000. http://dx.doi.org/10.1142/9789812793331_0063.
Texto completo da fonteCZEPIRSKI, L., e B. ŁACIAK. "INTERPRETATION OF HIGH - PRESSURE GAS ADSORPTION EQUILIBRIUM AND KINETIC DATA FOR ACTIVE CARBONS". In Proceedings of the Second Pacific Basin Conference. WORLD SCIENTIFIC, 2000. http://dx.doi.org/10.1142/9789812793331_0033.
Texto completo da fonteKumar Raman, Senthil. "Fatigue Analysis of a Pressure Swing Adsorption Vessel". In ASME 2023 Pressure Vessels & Piping Conference. American Society of Mechanical Engineers, 2023. http://dx.doi.org/10.1115/pvp2023-107586.
Texto completo da fonteHe, Min, Zaoxiao Zhang e Guangxu Cheng. "The Adsorption Study of Hydrogen on Iron and Vanadium". In ASME 2017 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/pvp2017-65582.
Texto completo da fonte"Carbon Dioxide Capture from Synthesis Gas Containing Steam by Pressure Swing Adsorption at Mid-high Temperature". In Special Session on Applications of Modeling and Simulation to Climatic Change and Environmental Sciences. SciTePress - Science and and Technology Publications, 2013. http://dx.doi.org/10.5220/0004624705290536.
Texto completo da fonteWang, Jinjie, Qi Hua Ng, Hon Chung Lau e Ludger Paul Stubbs. "Experimental Study on Enhanced Shale Gas Recovery by Competitive Adsorption of CO-CH Under High-Temperature, High-Pressure Conditions". In Offshore Technology Conference Asia. Offshore Technology Conference, 2020. http://dx.doi.org/10.4043/30270-ms.
Texto completo da fonteHedzyk, Nazarii, e Oleksandr Kondrat. "Low-Permeable Reservoirs as High Potential Assets for EGR". In SPE Eastern Europe Subsurface Conference. SPE, 2021. http://dx.doi.org/10.2118/208555-ms.
Texto completo da fonteRelatórios de organizações sobre o assunto "High pressure gas Adsorption"
George. PR-015-10600-R01 Proposed Sampling Methods for Supercritical Natural Gas Streams. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), julho de 2010. http://dx.doi.org/10.55274/r0010981.
Texto completo da fonteNygren, David Robert, David Robert Nygren e Ben Jones. High Pressure Xenon Gas TPC Development. Office of Scientific and Technical Information (OSTI), julho de 2018. http://dx.doi.org/10.2172/1504727.
Texto completo da fonteDennis G. Whyte. Disruption mitigation using high pressure gas jets. Office of Scientific and Technical Information (OSTI), outubro de 2007. http://dx.doi.org/10.2172/917556.
Texto completo da fonteMohayai, Tanaz. High-Pressure Gas TPC for DUNE Near Detector. Office of Scientific and Technical Information (OSTI), dezembro de 2018. http://dx.doi.org/10.2172/1524814.
Texto completo da fontede Bruijn, T. J. W., J. D. Chase e W. H. Dawson. Gas holdup in a tubular reactor at high pressure. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1986. http://dx.doi.org/10.4095/302663.
Texto completo da fonteGiokaris, N., Konstantin Goulianos, D. Anderson, S. Cihangir, A. Para, J. Zimmerman, D. Carlsmith et al. High pressure sampling gas calorimetry for the SDC calorimeter. Office of Scientific and Technical Information (OSTI), janeiro de 1991. http://dx.doi.org/10.2172/1847368.
Texto completo da fonteWuest, C. R., e C. D. Hendricks. A control system for maintaining high stability in gas pressure. Office of Scientific and Technical Information (OSTI), setembro de 1987. http://dx.doi.org/10.2172/5673903.
Texto completo da fonteBlander, M., L. Unger, A. Pelton e G. Eriksson. A possible origin of EL6 chondrites from a high temperature-high pressure solar gas. Office of Scientific and Technical Information (OSTI), maio de 1994. http://dx.doi.org/10.2172/10144532.
Texto completo da fonteFielder, Robert, Matthew Palmer, Wing Ng, Matthew Davis e Aditya Ringshia. High-Temperature, High-Bandwidth Fiber Optic Pressure and Temperature Sensors for Gas Turbine Applications. Fort Belvoir, VA: Defense Technical Information Center, dezembro de 2004. http://dx.doi.org/10.21236/ada429586.
Texto completo da fonteNaber, Jeffrey D. HIGH BRAKE MEAN EFFECTIVE PRESSURE AND HIGH EFFICIENCY MICRO PILOT IGNITION NATURAL GAS ENGINE. Office of Scientific and Technical Information (OSTI), fevereiro de 2020. http://dx.doi.org/10.2172/1605097.
Texto completo da fonte