Literatura científica selecionada sobre o tema "Human induce pluripotent stem cell"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Human induce pluripotent stem cell".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Human induce pluripotent stem cell"
El-Sayes, Abdullah. "Induced Pluripotent Stem Cells". Sciential - McMaster Undergraduate Science Journal, n.º 1 (25 de novembro de 2018): 16–22. http://dx.doi.org/10.15173/sciential.v1i1.1908.
Texto completo da fonteCruvinel, Estela, Isabella Ogusuku, Rosanna Cerioni, Sirlene Rodrigues, Jéssica Gonçalves, Maria Elisa Góes, Juliana Morais Alvim et al. "Long-term single-cell passaging of human iPSC fully supports pluripotency and high-efficient trilineage differentiation capacity". SAGE Open Medicine 8 (janeiro de 2020): 205031212096645. http://dx.doi.org/10.1177/2050312120966456.
Texto completo da fonteLoh, Yuin-Han, Suneet Agarwal, In-Hyun Park, Achia Urbach, Hongguang Huo, Garrett C. Heffner, Kitai Kim, Justine D. Miller, Kitwa Ng e George Q. Daley. "Generation of induced pluripotent stem cells from human blood". Blood 113, n.º 22 (28 de maio de 2009): 5476–79. http://dx.doi.org/10.1182/blood-2009-02-204800.
Texto completo da fonteDinnyes, A., M. K. Pirity, E. Gocza, P. Osteil, N. Daniel, Zs Tancos, Zs Polgar et al. "GENERATION OF RABBIT PLURIPOTENT STEM CELL LINES". Reproduction, Fertility and Development 24, n.º 1 (2012): 286. http://dx.doi.org/10.1071/rdv24n1ab246.
Texto completo da fonteYuan, Liyun, Xiaoyan Tang, Binyan Zhang e Guohui Ding. "Cell Pluripotency Levels Associated with Imprinted Genes in Human". Computational and Mathematical Methods in Medicine 2015 (2015): 1–8. http://dx.doi.org/10.1155/2015/471076.
Texto completo da fonteGo, Young-Hyun, Jumee Kim, Ho-Chang Jeong, Seong-Min Kim, Yun-Jeong Kim, Soon-Jung Park, Sung-Hwan Moon e Hyuk-Jin Cha. "Luteolin Induces Selective Cell Death of Human Pluripotent Stem Cells". Biomedicines 8, n.º 11 (27 de outubro de 2020): 453. http://dx.doi.org/10.3390/biomedicines8110453.
Texto completo da fonteSalloum-Asfar, Salam, Rudolf Engelke, Hanaa Mousa, Neha Goswami, I. Richard Thompson, Freshteh Palangi, Kamal Kamal et al. "Hyperosmotic Stress Induces a Specific Pattern for Stress Granule Formation in Human-Induced Pluripotent Stem Cells". Stem Cells International 2021 (15 de outubro de 2021): 1–19. http://dx.doi.org/10.1155/2021/8274936.
Texto completo da fonteUnzu, Carmen, Marc Friedli, Alexis Bosman, Marisa E. Jaconi, Barbara E. Wildhaber e Anne-Laure Rougemont. "Human Hepatocyte-Derived Induced Pluripotent Stem Cells: MYC Expression, Similarities to Human Germ Cell Tumors, and Safety Issues". Stem Cells International 2016 (2016): 1–16. http://dx.doi.org/10.1155/2016/4370142.
Texto completo da fonteCantone, Irene, e Amanda G. Fisher. "Human X chromosome inactivation and reactivation: implications for cell reprogramming and disease". Philosophical Transactions of the Royal Society B: Biological Sciences 372, n.º 1733 (25 de setembro de 2017): 20160358. http://dx.doi.org/10.1098/rstb.2016.0358.
Texto completo da fontePalladino, Antonio, Isabella Mavaro, Carmela Pizzoleo, Elena De Felice, Carla Lucini, Paolo de Girolamo, Paolo A. Netti e Chiara Attanasio. "Induced Pluripotent Stem Cells as Vasculature Forming Entities". Journal of Clinical Medicine 8, n.º 11 (25 de outubro de 2019): 1782. http://dx.doi.org/10.3390/jcm8111782.
Texto completo da fonteTeses / dissertações sobre o assunto "Human induce pluripotent stem cell"
Matz, Peggy. "Human induced pluripotent stem cell–based modeling of hepatogenesis". Doctoral thesis, Humboldt-Universität zu Berlin, Lebenswissenschaftliche Fakultät, 2016. http://dx.doi.org/10.18452/17530.
Texto completo da fonteThis project generated and characterized integration-free, episomal-derived induced pluripotent stem cell lines (E-iPSCs) from human somatic cell lines of different origins. Two different somatic cell lines were used, the human fetal fibroblast cell line HFF1 and human umbilical vein endothelial cell line HUVEC. Both were reprogrammed into integration-free iPSCs and were comparable amongst themselves and to human embryonic stem cells, the gold standard of pluripotent stem cells. Furthermore, the iPSCs with different genetic background were differentiated to hepatocyte-like cells (HLCs). With the use of iPSC-derived hepatocytes different stages during hepatogenesis and the potential of maturation could be analyzed as well as compared to fetal liver and primary human hepatocytes (PHH). This study could uncover gene regulatory networks which presence bipotential progenitor populations in HLCs. Additionally, comparable transcriptome profile analyses revealed that the iPSC-derived HLCs are immature and more similar to fetal liver. However, the HLCs hold typical functionality characteristics of hepatocyte, e.g. glycogen storage, uptake and release of ICG and CDFDA, bile acid and urea secretion. Furthermore, typical structures of hepatocytes such as bile canaliculi with microvilli, lipid storage and tight junctions are visible. In order to analyze the maturation potential of HLCs a long-term culture experiment was performed using HUVEC-iPSC-derived HLCs which implies the possibility for long-term culture of HLCs while increasing maturation. Additionally, HFF1-derived iPSCs were differentiated to endodermal progenitors (EPs) to analyze the endodermal development before biliary tree and hepatoblast which can give rise to hepatocytes, cholangiocytes and pancreatic cells. The multipotent EPs hold a great potential to analyze the endodermal development of intestine, lung, liver, bile duct and gallbladder, as well as pancreas.
Chen, Xike. "Integration Capacity of Human Induced Pluripotent Stem Cell-Derived Cartilage". Kyoto University, 2019. http://hdl.handle.net/2433/242390.
Texto completo da fonteZhang, Jiao, e 张姣. "Regulation of cell proliferation and modulation of differentiation in human induced pluripotent stem cell-derived mesenchumal stem cells". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2012. http://hub.hku.hk/bib/B49617503.
Texto completo da fontepublished_or_final_version
Medicine
Doctoral
Doctor of Philosophy
Ratanasirintrawoot, Sutheera. "Defining markers and mechanisms of human somatic cell reprogramming". Thesis, Harvard University, 2013. http://dissertations.umi.com/gsas.harvard:11236.
Texto completo da fonteZorzan, Irene. "Dissecting the role of TGF-beta pathway in human Pluripotent Stem Cells". Doctoral thesis, Università degli studi di Padova, 2019. http://hdl.handle.net/11577/3424722.
Texto completo da fonteLe cellule staminali embrionali umane (hESCs) e le cellule staminali pluripotenti indotte (hiPSCs) sono caratterizzate dalla capacità di dare origine tutti i tipi cellulari presenti nell’adulto e di poterle espandere indefinitamente in vitro. Comprendere i meccanismi molecolari che controllano la pluripotenza è fondamentale per differenziare cellule pluripotenti umane in tutti i tipi cellulari utili per applicazioni cliniche. Le vie di segnalazione che mantengono la pluripotenza nelle cellule staminali pluripotenti umane sono TGF-beta e FGF. Ad oggi, sono stati identificati solo pochi fattori di trascrizione che controllano la pluripotenza, come i fattori di trascrizione OCT4, SOX2 e NANOG. Pertanto, ho utilizzato un approccio sistematico per identificare nuovi componenti del network di pluripotenza. Mi sono focalizzata sul ruolo di TGF-beta al fine di trovare target funzionali diretti che a valle di questa via di segnalazione siano in grado di mantenere lo stato di pluripotenza. Intersecando un’analisi comparativa del trascrittoma con dati relativi alla posizione nel genoma, ho ottenuto una lista di 21 fattori di trascrizione, di cui poi 8 sono stati confermati. Ulteriori test funzionali hanno portato all’identificazione di quattro fattori di trascrizione che sono in grado di mantenere hESCs e hiPSCs pluripotenti indifferenziate in assenza di TGF-beta. In particolare, uno di questi quattro fattori di trascrizione non è mai stato studiato, quindi mi sono focalizzata su di esso. Ho successivamente caratterizzato il programma trascrizionale controllato da questo fattore per capire come sia in grado di mantenere la pluripotenza. È interessante notare che questo nuovo fattore regola sia la pluripotenza che la morfologia cellulare, ossia l’identità epiteliale. Infine, il knockdown di questo fattore durante la riprogrammazione somatica riduce fortemente il numero di colonie di iPSCs ottenute.
Yamashiro, Chika. "Generation of human oogonia from induced pluripotent stem cells in vitro". Kyoto University, 2019. http://hdl.handle.net/2433/242826.
Texto completo da fonteRohani, Leili, Claire Fabian, Heidrun Holland, Yahaira Naaldijk, Ralf Dressel, Henry Löffler-Wirth, Hans Binder, A. Arnold e Alexandra Stolzing. "Generation of human induced pluripotent stem cells using non-synthetic mRNA". Universitätsbibliothek Leipzig, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-205889.
Texto completo da fonteLau, Kei-ling Kelly, e 劉己綾. "Human pluripotent stem cells as a source of dendritic cells to induce immune tolerance". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2013. http://hdl.handle.net/10722/197516.
Texto completo da fontepublished_or_final_version
Anatomy
Master
Master of Philosophy
Jambi, Majed. "Differentiation of Human Atrial Myocytes from Endothelial Progenitor Cell-Derived Induced Pluripotent Stem Cells". Thèse, Université d'Ottawa / University of Ottawa, 2014. http://hdl.handle.net/10393/31158.
Texto completo da fonteRuiz-Torres, Sonya Jomara. "Modeling Fanconi Anemia in Squamous Epithelium using Human Induced Pluripotent Stem Cell-Derived Organoids". University of Cincinnati / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1573573103136768.
Texto completo da fonteLivros sobre o assunto "Human induce pluripotent stem cell"
Amit, M., e Joseph Itskovitz-Eldor. Atlas of human pluripotent stem cells: Derivation and culturing. New York: Humana Press, 2012.
Encontre o texto completo da fonteSha, Jin, e SpringerLink (Online service), eds. Human Embryonic and Induced Pluripotent Stem Cells: Lineage-Specific Differentiation Protocols. Totowa, NJ: Springer Science+Business Media, LLC, 2012.
Encontre o texto completo da fonteTurksen, Kursad, ed. Induced Pluripotent Stem Cells and Human Disease. New York, NY: Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2585-9.
Texto completo da fonteYe, Kaiming, e Sha Jin, eds. Human Embryonic and Induced Pluripotent Stem Cells. Totowa, NJ: Humana Press, 2012. http://dx.doi.org/10.1007/978-1-61779-267-0.
Texto completo da fonteSong, Loujin. Development of Novel Therapeutics for Timothy Syndrome Using Human Induced Pluripotent Stem Cells. [New York, N.Y.?]: [publisher not identified], 2017.
Encontre o texto completo da fontePluripotent circulations: Putting actor-network theory to work on stem cells in the USA, prior to 2001. Göteborg: Acta Universitatis Gothoburgensis, 2006.
Encontre o texto completo da fonteItskovitz-Eldor, Joseph, e Michal Amit. Atlas of Human Pluripotent Stem Cells: Derivation and Culturing. Humana, 2016.
Encontre o texto completo da fonteItskovitz-Eldor, Joseph, e Michal Amit. Atlas of Human Pluripotent Stem Cells: Derivation and Culturing. Springer, 2011.
Encontre o texto completo da fonteYe, Kaiming, e Sha Jin. Human Embryonic and Induced Pluripotent Stem Cells: Lineage-Specific Differentiation Protocols. Humana Press, 2016.
Encontre o texto completo da fonteNat, Roxana, e Andreas Eigentler. Cell Culture, iPS Cells and Neurodegenerative Diseases. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780190233563.003.0013.
Texto completo da fonteCapítulos de livros sobre o assunto "Human induce pluripotent stem cell"
Liu, Hua, Pooja Chaudhari, Su Mi Choi e Yoon-Young Jang. "Applications of Human Induced Pluripotent Stem Cell Derived Hepatocytes". In Stem Cells and Cancer Stem Cells,Volume 3, 213–20. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-2415-0_21.
Texto completo da fonteMedrano, Jose V., Carlos Simon e Renee Reijo Pera. "Human Germ Cell Differentiation from Pluripotent Embryonic Stem Cells and Induced Pluripotent Stem Cells". In Methods in Molecular Biology, 563–78. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-0659-8_27.
Texto completo da fonteLaevsky, Ilana. "Karyotype and Fluorescent In Situ Hybridization Analysis of Human Embryonic Stem Cell and Induced Pluripotent Stem Cell Lines". In Atlas of Human Pluripotent Stem Cells, 115–26. Totowa, NJ: Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61779-548-0_8.
Texto completo da fonteProts, Iryna, Beate Winner e Jürgen Winkler. "Modelling human neurodegeneration using induced pluripotent stem cells". In The Matrix of Stem Cell Research, 97–110. Milton Park, Abingdon, Oxon ; New York, NY : Routledge, 2020.: Routledge, 2019. http://dx.doi.org/10.4324/9781315104386-7.
Texto completo da fonteAmit, Michal, e Joseph Itskovitz-Eldor. "Morphology of Human Embryonic and Induced Pluripotent Stem Cell Colonies Cultured with Feeders". In Atlas of Human Pluripotent Stem Cells, 15–39. Totowa, NJ: Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61779-548-0_2.
Texto completo da fonteOmole, Adekunle Ebenezer, Adegbenro Omotuyi John Fakoya, Kinglsey Chinonyerem Nnawuba e Khawaja Husnain Haider. "Common Ethical Considerations of Human-Induced Pluripotent Stem Cell Research". In Handbook of Stem Cell Therapy, 1161–77. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-2655-6_21.
Texto completo da fonteOmole, Adekunle Ebenezer, Adegbenro Omotuyi John Fakoya, Kinglsey Chinonyerem Nnawuba e Khawaja Husnain Haider. "Common Ethical Considerations of Human-Induced Pluripotent Stem Cell Research". In Handbook of Stem Cell Therapy, 1–17. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-6016-0_21-1.
Texto completo da fonteLebrin, Franck. "Modeling Human Genetic Disorders Using Induced Pluripotent Stem Cells". In Stem Cell Biology and Regenerative Medicine, 283–98. New York: River Publishers, 2022. http://dx.doi.org/10.1201/9781003339601-13.
Texto completo da fonteKane, Nicole M., Chris Denning e Andrew H. Baker. "Genetic Modification of Human Embryonic and Induced Pluripotent Stem Cells: Viral and Non-viral Approaches". In Stem Cell Engineering, 159–79. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-11865-4_7.
Texto completo da fonteDominko, Tanja. "Cellular Reprogramming: Current Technology, Perspectives, and Generation of Induced Pluripotent Cells". In Human Stem Cell Technology and Biology, 297–310. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2010. http://dx.doi.org/10.1002/9780470889909.ch25.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Human induce pluripotent stem cell"
Singh, Ankur, Shalu Suri, Ted T. Lee, Jamie M. Chilton, Steve L. Stice, Hang Lu, Todd C. McDevitt e Andrés J. Garcia. "Adhesive Signature-Based, Label-Free Isolation of Human Pluripotent Stem Cells". In ASME 2012 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/sbc2012-80044.
Texto completo da fonteRodriguez, Marita L., Charles E. Murry e Nathan J. Sniadecki. "Assessment of Induced Pluripotent Stem Cell-Derived Cardiomyocyte Contractility Using Micropost Arrays". In ASME 2013 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/sbc2013-14640.
Texto completo da fonteMiranda, Claudia Canelas. "Towards fully defined culture systems for human induced pluripotent stem cell expansion". In 2012 IEEE 2nd Portuguese Meeting in Bioengineering (ENBENG). IEEE, 2012. http://dx.doi.org/10.1109/enbeng.2012.6331387.
Texto completo da fonteKasai, Tomonari, Kenta Hoshikawa, Shuto Takejiri, Masashi Ikeda, Kazuki Kumon, Anna Sanchez Calle, Arun Vaidyanath, Akifumi Mizutani, Chen Ling e Masaharu Seno. "Abstract LB-144: Derivation of a model of cancer stem cell from human induced pluripotent stem cells". In Proceedings: AACR 106th Annual Meeting 2015; April 18-22, 2015; Philadelphia, PA. American Association for Cancer Research, 2015. http://dx.doi.org/10.1158/1538-7445.am2015-lb-144.
Texto completo da fonteBudkova, Katerina, Tereza Novakova, Petr Vodicka e Katerina Vodickova Kepkova. "A40 Human induced pluripotent stem cell as a model system for Huntington’s disease". In EHDN 2022 Plenary Meeting, Bologna, Italy, Abstracts. BMJ Publishing Group Ltd, 2022. http://dx.doi.org/10.1136/jnnp-2022-ehdn.40.
Texto completo da fonteSchmieder, F., R. Habibey, V. Busskamp, J. W. Czarske e L. Büttner. "Adaptive Holographic Optogenetic Illumination for Human Neural Network Analysis". In Digital Holography and Three-Dimensional Imaging. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/dh.2022.w4a.7.
Texto completo da fonteKim, R., R. Petrut e H. Zhang. "Generation of Phenotype-Stable Alveolar Epithelial Type II Cell from Human Induced Pluripotent Stem Cells". In American Thoracic Society 2019 International Conference, May 17-22, 2019 - Dallas, TX. American Thoracic Society, 2019. http://dx.doi.org/10.1164/ajrccm-conference.2019.199.1_meetingabstracts.a7418.
Texto completo da fonteChang, Yuan-Hsiang, Kuniya Abe, Hideo Yokota, Kazuhiro Sudo, Yukio Nakamura, Slo-Li Chu, Chih-Yung Hsu e Ming-Dar Tsai. "Human Induced Pluripotent Stem Cell Reprogramming Prediction in Microscopy Images using LSTM based RNN". In 2019 41st Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). IEEE, 2019. http://dx.doi.org/10.1109/embc.2019.8857568.
Texto completo da fonteChang, Yuan-Hsiang, Kuniya Abe, Hideo Yokota, Kazuhiro Sudo, Yukio Nakamura, Cheng-Yu Lin e Ming-Dar Tsai. "Human induced pluripotent stem cell region recognition in microscopy images using Convolutional Neural Networks". In 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2017. http://dx.doi.org/10.1109/embc.2017.8037747.
Texto completo da fonteFolkmanaite, Milda, Xin Zhou, Francesca Margara, Manuela Zaccolo e Blanca Rodriguez. "In Silico Human Induced Pluripotent Stem Cell Derived Cardiomyocyte Electro-Mechanical Modelling and Simulation". In 2021 Computing in Cardiology (CinC). IEEE, 2021. http://dx.doi.org/10.23919/cinc53138.2021.9662938.
Texto completo da fonteRelatórios de organizações sobre o assunto "Human induce pluripotent stem cell"
Ying, Mingyao. Modeling Aggressive Medulloblastoma Using Human-Induced Pluripotent Stem Cells. Fort Belvoir, VA: Defense Technical Information Center, julho de 2015. http://dx.doi.org/10.21236/ada620932.
Texto completo da fontePailino, Lia, Lihua Lou, Alberto Sesena Rubfiaro, Jin He e Arvind Agarwal. Nanomechanical Properties of Engineered Cardiomyocytes Under Electrical Stimulation. Florida International University, outubro de 2021. http://dx.doi.org/10.25148/mmeurs.009775.
Texto completo da fonteGupta, Shweta. The Revolution of Human Organoids in Cell Biology. Natur Library, outubro de 2020. http://dx.doi.org/10.47496/nl.blog.12.
Texto completo da fonteSetaluri, Vijayasaradhi. Differentiation of Neonatal Human-Induced Pluripotent Stem Cells to Prostate Epithelial Cells: A Model to Study Prostate Cancer Development. Fort Belvoir, VA: Defense Technical Information Center, junho de 2014. http://dx.doi.org/10.21236/ada609443.
Texto completo da fonteSetaluri, Vijayasaradhi. Differentiation of Neonatal Human-Induced Pluripotent Stem Cells to Prostate Epithelial Cells: A Model to Study Prostate Cancer Development. Fort Belvoir, VA: Defense Technical Information Center, junho de 2013. http://dx.doi.org/10.21236/ada583418.
Texto completo da fonte