Artigos de revistas sobre o tema "Human induce pluripotent stem cell"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Human induce pluripotent stem cell".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
El-Sayes, Abdullah. "Induced Pluripotent Stem Cells". Sciential - McMaster Undergraduate Science Journal, n.º 1 (25 de novembro de 2018): 16–22. http://dx.doi.org/10.15173/sciential.v1i1.1908.
Texto completo da fonteCruvinel, Estela, Isabella Ogusuku, Rosanna Cerioni, Sirlene Rodrigues, Jéssica Gonçalves, Maria Elisa Góes, Juliana Morais Alvim et al. "Long-term single-cell passaging of human iPSC fully supports pluripotency and high-efficient trilineage differentiation capacity". SAGE Open Medicine 8 (janeiro de 2020): 205031212096645. http://dx.doi.org/10.1177/2050312120966456.
Texto completo da fonteLoh, Yuin-Han, Suneet Agarwal, In-Hyun Park, Achia Urbach, Hongguang Huo, Garrett C. Heffner, Kitai Kim, Justine D. Miller, Kitwa Ng e George Q. Daley. "Generation of induced pluripotent stem cells from human blood". Blood 113, n.º 22 (28 de maio de 2009): 5476–79. http://dx.doi.org/10.1182/blood-2009-02-204800.
Texto completo da fonteDinnyes, A., M. K. Pirity, E. Gocza, P. Osteil, N. Daniel, Zs Tancos, Zs Polgar et al. "GENERATION OF RABBIT PLURIPOTENT STEM CELL LINES". Reproduction, Fertility and Development 24, n.º 1 (2012): 286. http://dx.doi.org/10.1071/rdv24n1ab246.
Texto completo da fonteYuan, Liyun, Xiaoyan Tang, Binyan Zhang e Guohui Ding. "Cell Pluripotency Levels Associated with Imprinted Genes in Human". Computational and Mathematical Methods in Medicine 2015 (2015): 1–8. http://dx.doi.org/10.1155/2015/471076.
Texto completo da fonteGo, Young-Hyun, Jumee Kim, Ho-Chang Jeong, Seong-Min Kim, Yun-Jeong Kim, Soon-Jung Park, Sung-Hwan Moon e Hyuk-Jin Cha. "Luteolin Induces Selective Cell Death of Human Pluripotent Stem Cells". Biomedicines 8, n.º 11 (27 de outubro de 2020): 453. http://dx.doi.org/10.3390/biomedicines8110453.
Texto completo da fonteSalloum-Asfar, Salam, Rudolf Engelke, Hanaa Mousa, Neha Goswami, I. Richard Thompson, Freshteh Palangi, Kamal Kamal et al. "Hyperosmotic Stress Induces a Specific Pattern for Stress Granule Formation in Human-Induced Pluripotent Stem Cells". Stem Cells International 2021 (15 de outubro de 2021): 1–19. http://dx.doi.org/10.1155/2021/8274936.
Texto completo da fonteUnzu, Carmen, Marc Friedli, Alexis Bosman, Marisa E. Jaconi, Barbara E. Wildhaber e Anne-Laure Rougemont. "Human Hepatocyte-Derived Induced Pluripotent Stem Cells: MYC Expression, Similarities to Human Germ Cell Tumors, and Safety Issues". Stem Cells International 2016 (2016): 1–16. http://dx.doi.org/10.1155/2016/4370142.
Texto completo da fonteCantone, Irene, e Amanda G. Fisher. "Human X chromosome inactivation and reactivation: implications for cell reprogramming and disease". Philosophical Transactions of the Royal Society B: Biological Sciences 372, n.º 1733 (25 de setembro de 2017): 20160358. http://dx.doi.org/10.1098/rstb.2016.0358.
Texto completo da fontePalladino, Antonio, Isabella Mavaro, Carmela Pizzoleo, Elena De Felice, Carla Lucini, Paolo de Girolamo, Paolo A. Netti e Chiara Attanasio. "Induced Pluripotent Stem Cells as Vasculature Forming Entities". Journal of Clinical Medicine 8, n.º 11 (25 de outubro de 2019): 1782. http://dx.doi.org/10.3390/jcm8111782.
Texto completo da fonteVallier, Ludovic, Thomas Touboul, Stephanie Brown, Candy Cho, Bilada Bilican, Morgan Alexander, Jessica Cedervall et al. "Signaling Pathways Controlling Pluripotency and Early Cell Fate Decisions of Human Induced Pluripotent Stem Cells". STEM CELLS 27, n.º 11 (17 de agosto de 2009): 2655–66. http://dx.doi.org/10.1002/stem.199.
Texto completo da fonteTalan, Jamie. "Investigators Induce Human Pluripotent Stem Cells into Astrocytes". Neurology Today 11, n.º 12 (junho de 2011): 1. http://dx.doi.org/10.1097/01.nt.0000399611.11026.9e.
Texto completo da fonteRomito, Antonio, e Gilda Cobellis. "Pluripotent Stem Cells: Current Understanding and Future Directions". Stem Cells International 2016 (2016): 1–20. http://dx.doi.org/10.1155/2016/9451492.
Texto completo da fonteSun, Guoqiang, Chelsea Fu, Caroline Shen e Yanhong Shi. "Histone Deacetylases in Neural Stem Cells and Induced Pluripotent Stem Cells". Journal of Biomedicine and Biotechnology 2011 (2011): 1–6. http://dx.doi.org/10.1155/2011/835968.
Texto completo da fonteLian, Qizhou, Yenyen Chow, Miguel Esteban, Duanqing Pei e Hung-Fat Tse. "Future perspective of induced pluripotent stem cells for diagnosis, drug screening and treatment of human diseases". Thrombosis and Haemostasis 104, n.º 07 (2010): 39–44. http://dx.doi.org/10.1160/th10-05-0269.
Texto completo da fonteSp, Nipin, Dong Young Kang, Eun Seong Jo, Alexis Rugamba, Wan Seop Kim, Yeong-Min Park, Dae-Yong Hwang et al. "Tannic Acid Promotes TRAIL-Induced Extrinsic Apoptosis by Regulating Mitochondrial ROS in Human Embryonic Carcinoma Cells". Cells 9, n.º 2 (23 de janeiro de 2020): 282. http://dx.doi.org/10.3390/cells9020282.
Texto completo da fonteHall, Vanessa Jane. "Early development of the porcine embryo: the importance of cell signalling in development of pluripotent cell lines". Reproduction, Fertility and Development 25, n.º 1 (2013): 94. http://dx.doi.org/10.1071/rd12264.
Texto completo da fonteAprihati, Aprihati, B. S. Pikir e Andrianto Andrianto. "Generation of Human-Induced Pluripotent Stem Cells from Peripheral Blood Mononuclear Cells using Small-Molecule Compound VC6TFZ". Open Access Macedonian Journal of Medical Sciences 8, A (6 de maio de 2020): 250–55. http://dx.doi.org/10.3889/oamjms.2020.3862.
Texto completo da fonteNaaman, Hila, Tatiana Rabinski, Avi Yizhak, Solly Mizrahi, Yonat Shemer Avni, Ran Taube, Bracha Rager et al. "Measles Virus Persistent Infection of Human Induced Pluripotent Stem Cells". Cellular Reprogramming 20, n.º 1 (fevereiro de 2018): 17–26. http://dx.doi.org/10.1089/cell.2017.0034.
Texto completo da fonteYang, Yu-Hua, Ru-Zhi Zhang, Sai Cheng, Bin Xu, Ting Tian, Hai-Xia Shi, Li Xiao e Ren-He Chen. "Generation of Induced Pluripotent Stem Cells from Human Epidermal Keratinocytes". Cellular Reprogramming 20, n.º 6 (dezembro de 2018): 356–64. http://dx.doi.org/10.1089/cell.2018.0035.
Texto completo da fonteNemade, Harshal, Aviseka Acharya, Umesh Chaudhari, Erastus Nembo, Filomain Nguemo, Nicole Riet, Hinrich Abken, Jürgen Hescheler, Symeon Papadopoulos e Agapios Sachinidis. "Cyclooxygenases Inhibitors Efficiently Induce Cardiomyogenesis in Human Pluripotent Stem Cells". Cells 9, n.º 3 (27 de fevereiro de 2020): 554. http://dx.doi.org/10.3390/cells9030554.
Texto completo da fontePekkanen-Mattila, Mari, Marisa Ojala, Erja Kerkelä, Kristiina Rajala, Heli Skottman e Katriina Aalto-Setälä. "The Effect of Human and Mouse Fibroblast Feeder Cells on Cardiac Differentiation of Human Pluripotent Stem Cells". Stem Cells International 2012 (2012): 1–10. http://dx.doi.org/10.1155/2012/875059.
Texto completo da fontePark, J. K., K. H. Choi, D. C. Son, J. I. Oh e C. K. Lee. "294 NAÏVE STATE-LIKE PLURIPOTENT STEM CELL LINES DERIVED FROM PORCINE EMBRYONIC FIBROBLASTS". Reproduction, Fertility and Development 25, n.º 1 (2013): 294. http://dx.doi.org/10.1071/rdv25n1ab294.
Texto completo da fonteThomson, James A., e Junying Yu. "Human Embryonic and Human Induced Pluripotent Stem Cell Lines". Journal of Medical Sciences 1, n.º 3 (25 de novembro de 2008): 106–13. http://dx.doi.org/10.2174/1996327000801030106.
Texto completo da fonteRehakova, Daniela, Tereza Souralova e Irena Koutna. "Clinical-Grade Human Pluripotent Stem Cells for Cell Therapy: Characterization Strategy". International Journal of Molecular Sciences 21, n.º 7 (31 de março de 2020): 2435. http://dx.doi.org/10.3390/ijms21072435.
Texto completo da fonteCoco-Martin, Rosa M., Salvador Pastor-Idoate e Jose Carlos Pastor. "Cell Replacement Therapy for Retinal and Optic Nerve Diseases: Cell Sources, Clinical Trials and Challenges". Pharmaceutics 13, n.º 6 (11 de junho de 2021): 865. http://dx.doi.org/10.3390/pharmaceutics13060865.
Texto completo da fonteEguizabal, C., N. Montserrat, R. Vassena, M. Barragan, E. Garreta, L. Garcia-Quevedo, F. Vidal, A. Giorgetti, A. Veiga e J. C. Izpisua Belmonte. "Complete Meiosis from Human Induced Pluripotent Stem Cells". STEM CELLS 29, n.º 8 (26 de julho de 2011): 1186–95. http://dx.doi.org/10.1002/stem.672.
Texto completo da fonteKim, Eun-Mi, Gohar Manzar e Nicholas Zavazava. "Human iPS cell-derived CD34+ hematopoietic progenitor cells induce T cell anergy in alloreactive CD8+ T cells (P2188)". Journal of Immunology 190, n.º 1_Supplement (1 de maio de 2013): 69.32. http://dx.doi.org/10.4049/jimmunol.190.supp.69.32.
Texto completo da fonteGrauer, Matthias, Martina Konantz, Nina I. Niebuhr, Lothar Kanz, In-Hyun Park, George Q. Daley e Claudia Lengerke. "Hematopoietic Development From Human Induced Pluripotent Stem Cells." Blood 114, n.º 22 (20 de novembro de 2009): 2530. http://dx.doi.org/10.1182/blood.v114.22.2530.2530.
Texto completo da fonteWatanabe, Katsuhito, Takashi Nakamura, Shoko Onodera, Akiko Saito, Takahiko Shibahara e Toshifumi Azuma. "A novel GNAS-mutated human induced pluripotent stem cell model for understanding GNAS-mutated tumors". Tumor Biology 42, n.º 9 (setembro de 2020): 101042832096258. http://dx.doi.org/10.1177/1010428320962588.
Texto completo da fonteZhu, Qian, Qiqi Lu, Rong Gao e Tong Cao. "Prospect of Human Pluripotent Stem Cell-Derived Neural Crest Stem Cells in Clinical Application". Stem Cells International 2016 (2016): 1–11. http://dx.doi.org/10.1155/2016/7695836.
Texto completo da fonteGallegos-Cárdenas, Amalia, Robin Webb, Erin Jordan, Rachel West, Franklin D. West, Jeong-Yeh Yang, Kai Wang e Steven L. Stice. "Pig Induced Pluripotent Stem Cell-Derived Neural Rosettes Developmentally Mimic Human Pluripotent Stem Cell Neural Differentiation". Stem Cells and Development 24, n.º 16 (15 de agosto de 2015): 1901–11. http://dx.doi.org/10.1089/scd.2015.0025.
Texto completo da fonteIvanova, Julia S., Natalia A. Pugovkina, Irina E. Neganova, Irina V. Kozhukharova, Nikolay N. Nikolsky e Olga G. Lyublinskaya. "Cell Cycle-Coupled Changes in the Level of Reactive Oxygen Species Support the Proliferation of Human Pluripotent Stem Cells". Stem Cells 39, n.º 12 (21 de setembro de 2021): 1671–87. http://dx.doi.org/10.1002/stem.3450.
Texto completo da fonteChoi, Kyung-Dal, Junying Yu, Kimberly Smuga-Otto, Jessica Dias, Giorgia Salvagiotto, Maxim Vodyanik, James Thomson e Igor Slukvin. "Hematopoietic Differentiation of Human Induced Pluripotent Stem Cells". Blood 112, n.º 11 (16 de novembro de 2008): 731. http://dx.doi.org/10.1182/blood.v112.11.731.731.
Texto completo da fonteArnold, Antje, Yahaira M. Naaldijk, Claire Fabian, Henry Wirth, Hans Binder, Guido Nikkhah, Lyle Armstrong e Alexandra Stolzing. "Reprogramming of Human Huntington Fibroblasts Using mRNA". ISRN Cell Biology 2012 (7 de dezembro de 2012): 1–12. http://dx.doi.org/10.5402/2012/124878.
Texto completo da fonteBayzigitov, Daniel R., Sergey P. Medvedev, Elena V. Dementyeva, Sevda A. Bayramova, Evgeny A. Pokushalov, Alexander M. Karaskov e Suren M. Zakian. "Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes Afford New Opportunities in Inherited Cardiovascular Disease Modeling". Cardiology Research and Practice 2016 (2016): 1–17. http://dx.doi.org/10.1155/2016/3582380.
Texto completo da fonteIsogai, Sumito, Naoki Yamamoto, Noriko Hiramatsu, Yasuhiro Goto, Masamichi Hayashi, Masashi Kondo e Kazuyoshi Imaizumi. "Preparation of Induced Pluripotent Stem Cells Using Human Peripheral Blood Monocytes". Cellular Reprogramming 20, n.º 6 (dezembro de 2018): 347–55. http://dx.doi.org/10.1089/cell.2018.0024.
Texto completo da fontePierson, Tyler Mark, Yogesh K. Kushwaha, Maria Gabriela Otero, Phillip J. Kenny, Fabian David Nonis e Jaemin Kim. "Human induced pluripotent stem cell models for CLN6". Molecular Genetics and Metabolism 132, n.º 2 (fevereiro de 2021): S86—S87. http://dx.doi.org/10.1016/j.ymgme.2020.12.206.
Texto completo da fonteZhang, Jue, Li-Fang Chu, Zhonggang Hou, Michael P. Schwartz, Timothy Hacker, Vernella Vickerman, Scott Swanson et al. "Functional characterization of human pluripotent stem cell-derived arterial endothelial cells". Proceedings of the National Academy of Sciences 114, n.º 30 (10 de julho de 2017): E6072—E6078. http://dx.doi.org/10.1073/pnas.1702295114.
Texto completo da fontePouyanfard, Somayeh, Nairika Meshgin, Luisjesus S. Cruz, Karin Diggle, Hamidreza Hashemi, Timothy V. Pham, Manuel Fierro et al. "Human Induced Pluripotent Stem Cell-Derived Macrophages Ameliorate Liver Fibrosis". Stem Cells 39, n.º 12 (1 de outubro de 2021): 1701–17. http://dx.doi.org/10.1002/stem.3449.
Texto completo da fonteMaysubara, Hiroyuki, Akira Niwa, Tatsutoshi Nakahata e Megumu K. Saito. "NK Cells from Human Pluripotent Stem Cells for Immunotherapy". Blood 132, Supplement 1 (29 de novembro de 2018): 4955. http://dx.doi.org/10.1182/blood-2018-99-115499.
Texto completo da fonteSato, Takahiko. "Induction of Skeletal Muscle Progenitors and Stem Cells from human induced Pluripotent Stem Cells". Journal of Neuromuscular Diseases 7, n.º 4 (18 de setembro de 2020): 395–405. http://dx.doi.org/10.3233/jnd-200497.
Texto completo da fonteWang, Ping, Tao Ma, Dong Guo, Kevin Hu, Yan Shu, Hockin H. K. Xu e Abraham Schneider. "Metformin induces osteoblastic differentiation of human induced pluripotent stem cell‐derived mesenchymal stem cells". Journal of Tissue Engineering and Regenerative Medicine 12, n.º 2 (11 de agosto de 2017): 437–46. http://dx.doi.org/10.1002/term.2470.
Texto completo da fonteLewandowski, Jarosław, e Maciej Kurpisz. "Techniques of Human Embryonic Stem Cell and Induced Pluripotent Stem Cell Derivation". Archivum Immunologiae et Therapiae Experimentalis 64, n.º 5 (3 de março de 2016): 349–70. http://dx.doi.org/10.1007/s00005-016-0385-y.
Texto completo da fontePetkov, Stoyan. "THE QUEST FOR PORCINE PLURIPOTENT STEM CELLS". Reproduction, Fertility and Development 25, n.º 1 (2013): 319. http://dx.doi.org/10.1071/rdv25n1ab342.
Texto completo da fonteResar, Linda, Sandeep N. Shah, Candace Kerr, Leslie Cope, Elias Zambidis, Amy Belton e David L. Huso. "HMGA1, a Factor Enriched in Hematopoietic Stem Cells, Embryonic Stem Cells, and Hematologic Malignancy, Enhances Cellular Reprogramming to a Pluripotent Stem-Like Cell." Blood 120, n.º 21 (16 de novembro de 2012): 2323. http://dx.doi.org/10.1182/blood.v120.21.2323.2323.
Texto completo da fonteIlling, Anett, Marianne Stockmann, Narasimha Swamy Telugu, Leonhard Linta, Ronan Russell, Martin Müller, Thomas Seufferlein, Stefan Liebau e Alexander Kleger. "Definitive Endoderm Formation from Plucked Human Hair-Derived Induced Pluripotent Stem Cells and SK Channel Regulation". Stem Cells International 2013 (2013): 1–13. http://dx.doi.org/10.1155/2013/360573.
Texto completo da fonteGajbhiye, Virendra, Leah Escalante, Guojun Chen, Alex Laperle, Qifeng Zheng, Benjamin Steyer, Shaoqin Gong e Krishanu Saha. "Drug-loaded nanoparticles induce gene expression in human pluripotent stem cell derivatives". Nanoscale 6, n.º 1 (2014): 521–31. http://dx.doi.org/10.1039/c3nr04794f.
Texto completo da fonteStebbins, Matthew J., Benjamin D. Gastfriend, Scott G. Canfield, Ming-Song Lee, Drew Richards, Madeline G. Faubion, Wan-Ju Li, Richard Daneman, Sean P. Palecek e Eric V. Shusta. "Human pluripotent stem cell–derived brain pericyte–like cells induce blood-brain barrier properties". Science Advances 5, n.º 3 (março de 2019): eaau7375. http://dx.doi.org/10.1126/sciadv.aau7375.
Texto completo da fonteGao, Jinghui, Sophia Petraki, Xingshen Sun, Leonard A. Brooks, Thomas J. Lynch, Chih-Lin Hsieh, Reem Elteriefi et al. "Derivation of induced pluripotent stem cells from ferret somatic cells". American Journal of Physiology-Lung Cellular and Molecular Physiology 318, n.º 4 (1 de abril de 2020): L671—L683. http://dx.doi.org/10.1152/ajplung.00456.2019.
Texto completo da fonte