Artigos de revistas sobre o tema "Hybrid metal/semiconductor light sources"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Hybrid metal/semiconductor light sources".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Yokota, Hiroaki, Atsuhito Fukasawa, Minako Hirano, and Toru Ide. "Low-Light Photodetectors for Fluorescence Microscopy." Applied Sciences 11, no. 6 (2021): 2773. http://dx.doi.org/10.3390/app11062773.
Texto completo da fonteJin, Sangrak, Yale Jeon, Min Soo Jeon, et al. "Acetogenic bacteria utilize light-driven electrons as an energy source for autotrophic growth." Proceedings of the National Academy of Sciences 118, no. 9 (2021): e2020552118. http://dx.doi.org/10.1073/pnas.2020552118.
Texto completo da fonteWei, Hong, and Hongxing Xu. "Nanowire-based plasmonic waveguides and devices for integrated nanophotonic circuits." Nanophotonics 1, no. 2 (2012): 155–69. http://dx.doi.org/10.1515/nanoph-2012-0012.
Texto completo da fonteOda, Ryosuke, Toshiki Hirogaki, Eiichi Aoyama, and Keiji Ogawa. "Hybrid Process of Laser Heat Treatment and Forming of Thin Plate with a Small Power Semiconductor Laser." Advanced Materials Research 1136 (January 2016): 423–29. http://dx.doi.org/10.4028/www.scientific.net/amr.1136.423.
Texto completo da fonteGraus, Javier, Carlos Bueno-Alejo, and Jose Hueso. "In-Situ Deposition of Plasmonic Gold Nanotriangles and Nanoprisms onto Layered Hydroxides for Full-Range Photocatalytic Response towards the Selective Reduction of p-Nitrophenol." Catalysts 8, no. 9 (2018): 354. http://dx.doi.org/10.3390/catal8090354.
Texto completo da fontePaudel, Hari P., and Michael N. Leuenberger. "Light-Controlled Plasmon Switching Using Hybrid Metal-Semiconductor Nanostructures." Nano Letters 12, no. 6 (2012): 2690–96. http://dx.doi.org/10.1021/nl203990c.
Texto completo da fonteBuchal, Ch, and M. Löken. "Silicon-Based Metal-Semiconductor-Metal Detectors." MRS Bulletin 23, no. 4 (1998): 55–59. http://dx.doi.org/10.1557/s088376940003027x.
Texto completo da fonteMaeda, Kazuhiko, Keita Sekizawa, and Osamu Ishitani. "A polymeric-semiconductor–metal-complex hybrid photocatalyst for visible-light CO2 reduction." Chemical Communications 49, no. 86 (2013): 10127. http://dx.doi.org/10.1039/c3cc45532g.
Texto completo da fontePark, Kyoung-Won, and Alexie M. Kolpak. "Photocatalytic hydrogen evolution activity of Co/CoO hybrid structures: a first-principles study on the Co layer thickness effect." Journal of Materials Chemistry A 7, no. 27 (2019): 16176–89. http://dx.doi.org/10.1039/c9ta04508b.
Texto completo da fonteNewaz, A. K. M., W. J. Chang, K. D. Wallace, et al. "A nanoscale Ti/GaAs metal-semiconductor hybrid sensor for room temperature light detection." Applied Physics Letters 97, no. 8 (2010): 082105. http://dx.doi.org/10.1063/1.3480611.
Texto completo da fonteAkitsu, Takashiro, Barbara Miroslaw, and Shanmugavel Sudarsan. "Photofunctions in Hybrid Systems of Schiff Base Metal Complexes and Metal or Semiconductor (Nano)Materials." International Journal of Molecular Sciences 23, no. 17 (2022): 10005. http://dx.doi.org/10.3390/ijms231710005.
Texto completo da fonteFouad, Dina Mamdouh, and Mona Bakr Mohamed. "Comparative Study of the Photocatalytic Activity of Semiconductor Nanostructures and Their Hybrid Metal Nanocomposites on the Photodegradation of Malathion." Journal of Nanomaterials 2012 (2012): 1–8. http://dx.doi.org/10.1155/2012/524123.
Texto completo da fonteBoller, Klaus-J., Albert van Rees, Youwen Fan, et al. "Hybrid Integrated Semiconductor Lasers with Silicon Nitride Feedback Circuits." Photonics 7, no. 1 (2019): 4. http://dx.doi.org/10.3390/photonics7010004.
Texto completo da fonteZhu, Kai, Chunrui Wang, Pedro H. C. Camargo, and Jiale Wang. "Investigating the effect of MnO2 band gap in hybrid MnO2–Au materials over the SPR-mediated activities under visible light." Journal of Materials Chemistry A 7, no. 3 (2019): 925–31. http://dx.doi.org/10.1039/c8ta09785b.
Texto completo da fonteMicheel, Mathias, Kaituo Dong, Lilac Amirav, and Maria Wächtler. "Lateral charge migration in 1D semiconductor–metal hybrid photocatalytic systems." Journal of Chemical Physics 158, no. 15 (2023): 154701. http://dx.doi.org/10.1063/5.0144785.
Texto completo da fonteDana, Jayanta, Partha Maity, and Hirendra N. Ghosh. "Hot-electron transfer from the semiconductor domain to the metal domain in CdSe@CdS{Au} nano-heterostructures." Nanoscale 9, no. 27 (2017): 9723–31. http://dx.doi.org/10.1039/c7nr02232h.
Texto completo da fonteLian, Tianquan. "(Invited) Light Driven H2 Generation in Pt-Tipped CdS Nanorods: Dependence on the Pt Size and CdS Rod Length." ECS Meeting Abstracts MA2022-01, no. 13 (2022): 932. http://dx.doi.org/10.1149/ma2022-0113932mtgabs.
Texto completo da fonteLan, Meng, Guoli Fan, Lan Yang, and Feng Li. "Enhanced visible-light-induced photocatalytic performance of a novel ternary semiconductor coupling system based on hybrid Zn–In mixed metal oxide/g-C3N4 composites." RSC Advances 5, no. 8 (2015): 5725–34. http://dx.doi.org/10.1039/c4ra07073a.
Texto completo da fonteOoi, Zi-En, Thelese R. B. Foong, Samarendra P. Singh, Khai Leok Chan, and Ananth Dodabalapur. "A light emitting transistor based on a hybrid metal oxide-organic semiconductor lateral heterostructure." Applied Physics Letters 100, no. 9 (2012): 093302. http://dx.doi.org/10.1063/1.3689758.
Texto completo da fonteYang, Mo, Jin Cheng Song, and Miao Yi. "Compact Reflection Bragg Grating Based on Metal-Insulator-Semiconductor Structure." Advanced Materials Research 472-475 (February 2012): 2260–63. http://dx.doi.org/10.4028/www.scientific.net/amr.472-475.2260.
Texto completo da fonteZhang, Xiangchao, Difa Xu, Yanrong Jia, and Shiying Zhang. "Fabrication of metal/semiconductor hybrid Ag/AgInO2 nanocomposites with enhanced visible-light-driven photocatalytic properties." RSC Advances 7, no. 48 (2017): 30392–96. http://dx.doi.org/10.1039/c7ra02331f.
Texto completo da fonteXI, J. Q., MANAS OJHA, WOOJIN CHO, et al. "OMNI-DIRECTIONAL REFLECTOR USING A LOW REFRACTIVE INDEX MATERIAL." International Journal of High Speed Electronics and Systems 14, no. 03 (2004): 726–31. http://dx.doi.org/10.1142/s0129156404002740.
Texto completo da fonteLee, Ho-Jun, Jung-Wook Min, Kye-Jin Lee, et al. "Improved Light Output Power of Chemically Transferred InGaN/GaN Light-Emitting Diodes for Flexible Optoelectronic Applications." Journal of Nanomaterials 2015 (2015): 1–6. http://dx.doi.org/10.1155/2015/142096.
Texto completo da fonteCamargo, Franco V. A., Yuval Ben-Shahar, Tetsuhiko Nagahara, et al. "Visualizing Ultrafast Electron Transfer Processes in Semiconductor–Metal Hybrid Nanoparticles: Toward Excitonic–Plasmonic Light Harvesting." Nano Letters 21, no. 3 (2021): 1461–68. http://dx.doi.org/10.1021/acs.nanolett.0c04614.
Texto completo da fonteHuang, Zhenping, Jian Chen, Yi Liu, et al. "Hybrid metal-semiconductor cavities for multi-band perfect light absorbers and excellent electric conducting interfaces." Journal of Physics D: Applied Physics 50, no. 33 (2017): 335106. http://dx.doi.org/10.1088/1361-6463/aa7c14.
Texto completo da fonteMaeda, Kazuhiko. "Metal‐Complex/Semiconductor Hybrid Photocatalysts and Photoelectrodes for CO 2 Reduction Driven by Visible Light." Advanced Materials 31, no. 25 (2019): 1808205. http://dx.doi.org/10.1002/adma.201808205.
Texto completo da fonteHong, Jong-Wook. "Development of Visible-Light-Driven Rh–TiO2–CeO2 Hybrid Photocatalysts for Hydrogen Production." Catalysts 11, no. 7 (2021): 848. http://dx.doi.org/10.3390/catal11070848.
Texto completo da fonteFerrera, M., M. Rahaman, S. Sanders, et al. "Controlling excitons in the quantum tunneling regime in a hybrid plasmonic/2D semiconductor interface." Applied Physics Reviews 9, no. 3 (2022): 031401. http://dx.doi.org/10.1063/5.0078068.
Texto completo da fonteZhang, Jing, Xiao Meng Wu, and Bo Dang. "Optical bistability and multistability in hybrid system." Laser Physics 33, no. 9 (2023): 096002. http://dx.doi.org/10.1088/1555-6611/ace3bd.
Texto completo da fonteNemanich, R. J., S. L. English, J. D. Hartman, W. Yang, H. Ade, and R. F. Davis. "Photo-Electron Emission Microscopy of Semiconductor Surfaces." Microscopy and Microanalysis 4, S2 (1998): 606–7. http://dx.doi.org/10.1017/s1431927600023151.
Texto completo da fonteChen, Hua-Jun. "Fano resonance induced fast to slow light in a hybrid semiconductor quantum dot and metal nanoparticle system." Laser Physics Letters 17, no. 2 (2020): 025201. http://dx.doi.org/10.1088/1612-202x/ab60ac.
Texto completo da fonteWaiskopf, Nir, Yuval Ben-Shahar, Michael Galchenko, et al. "Photocatalytic Reactive Oxygen Species Formation by Semiconductor–Metal Hybrid Nanoparticles. Toward Light-Induced Modulation of Biological Processes." Nano Letters 16, no. 7 (2016): 4266–73. http://dx.doi.org/10.1021/acs.nanolett.6b01298.
Texto completo da fonteLinic, Suljo. "(Invited) Maximizing Efficiencies of Photocatalytic Water Splitting By Engineering Interfaces in Multi-Component Photocatalysts." ECS Meeting Abstracts MA2018-01, no. 31 (2018): 1868. http://dx.doi.org/10.1149/ma2018-01/31/1868.
Texto completo da fonteHaffner, Christian, Andreas Joerg, Michael Doderer, et al. "Nano–opto-electro-mechanical switches operated at CMOS-level voltages." Science 366, no. 6467 (2019): 860–64. http://dx.doi.org/10.1126/science.aay8645.
Texto completo da fonteSuzuki, Tomiko M., Akihide Iwase, Hiromitsu Tanaka, Shunsuke Sato, Akihiko Kudo, and Takeshi Morikawa. "Z-scheme water splitting under visible light irradiation over powdered metal-complex/semiconductor hybrid photocatalysts mediated by reduced graphene oxide." Journal of Materials Chemistry A 3, no. 25 (2015): 13283–90. http://dx.doi.org/10.1039/c5ta02045j.
Texto completo da fonteGonzález-Fernández, Alfredo A., Mariano Aceves-Mijares, Oscar Pérez-Díaz, Joaquin Hernández-Betanzos, and Carlos Domínguez. "Embedded Silicon Nanoparticles as Enabler of a Novel CMOS-Compatible Fully Integrated Silicon Photonics Platform." Crystals 11, no. 6 (2021): 630. http://dx.doi.org/10.3390/cryst11060630.
Texto completo da fonteMorisawa, Naoya, Mitsuhisa Ikeda, Sho Nakanishi, Akira Kawanami, Katsunori Makihara, and Seiichi Miyazaki. "Light-Induced Carrier Transfer in NiSi-Nanodots/Si-Quantum-Dots Hybrid Floating Gate in Metal–Oxide–Semiconductor Structures." Japanese Journal of Applied Physics 49, no. 4 (2010): 04DJ04. http://dx.doi.org/10.1143/jjap.49.04dj04.
Texto completo da fonteTorres-Pinto, André, Maria J. Sampaio, Cláudia G. Silva, Joaquim L. Faria, and Adrián M. T. Silva. "Recent Strategies for Hydrogen Peroxide Production by Metal-Free Carbon Nitride Photocatalysts." Catalysts 9, no. 12 (2019): 990. http://dx.doi.org/10.3390/catal9120990.
Texto completo da fonteGriffiths, A. D., J. Herrnsdorf, J. J. D. McKendry, M. J. Strain, and M. D. Dawson. "Gallium nitride micro-light-emitting diode structured light sources for multi-modal optical wireless communications systems." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 378, no. 2169 (2020): 20190185. http://dx.doi.org/10.1098/rsta.2019.0185.
Texto completo da fonteFeng, Chengang, Mingdong Yi, Shunyang Yu, Ivo A. Hümmelgen, Tong Zhang, and Dongge Ma. "Hybrid Permeable Metal-Base Transistor with Large Common-Emitter Current Gain and Low Operational Voltage." Journal of Nanoscience and Nanotechnology 8, no. 4 (2008): 2037–43. http://dx.doi.org/10.1166/jnn.2008.054.
Texto completo da fonteMorris, Gareth, Ioritz Sorzabal-Bellido, Matthew Bilton, et al. "A Novel Self-Assembly Strategy for the Fabrication of Nano-Hybrid Satellite Materials with Plasmonically Enhanced Catalytic Activity." Nanomaterials 11, no. 6 (2021): 1580. http://dx.doi.org/10.3390/nano11061580.
Texto completo da fonteSingh, Deobrat, Pritam Kumar Panda, Nabil Khossossi, Yogendra Kumar Mishra, Abdelmajid Ainane, and Rajeev Ahuja. "Impact of edge structures on interfacial interactions and efficient visible-light photocatalytic activity of metal–semiconductor hybrid 2D materials." Catalysis Science & Technology 10, no. 10 (2020): 3279–89. http://dx.doi.org/10.1039/d0cy00420k.
Texto completo da fonteNakada, Akinobu, Ryo Kuriki, Keita Sekizawa, et al. "Effects of Interfacial Electron Transfer in Metal Complex–Semiconductor Hybrid Photocatalysts on Z-Scheme CO2 Reduction under Visible Light." ACS Catalysis 8, no. 10 (2018): 9744–54. http://dx.doi.org/10.1021/acscatal.8b03062.
Texto completo da fonteSun, Feiying, Changbin Nie, Xingzhan Wei, Hu Mao, Yupeng Zhang, and Guo Ping Wang. "All-optical modulation based on MoS2-Plasmonic nanoslit hybrid structures." Nanophotonics 10, no. 16 (2021): 3957–65. http://dx.doi.org/10.1515/nanoph-2021-0279.
Texto completo da fonteGarcia-Peiro, Jose I., Javier Bonet-Aleta, Carlos J. Bueno-Alejo, and Jose L. Hueso. "Recent Advances in the Design and Photocatalytic Enhanced Performance of Gold Plasmonic Nanostructures Decorated with Non-Titania Based Semiconductor Hetero-Nanoarchitectures." Catalysts 10, no. 12 (2020): 1459. http://dx.doi.org/10.3390/catal10121459.
Texto completo da fonteTang, Ling, Shan Liang, Jian-Bo Li, et al. "Controlled Synthesis of Au Nanocrystals-Metal Selenide Hybrid Nanostructures toward Plasmon-Enhanced Photoelectrochemical Energy Conversion." Nanomaterials 10, no. 3 (2020): 564. http://dx.doi.org/10.3390/nano10030564.
Texto completo da fonteSaad, A. M., M. B. Mohamed, and I. M. Azzouz. "Synthesis, optical properties, and amplified spontaneous emission of hybrid Ag–SiO2–CdTe nanocomposite." Canadian Journal of Physics 95, no. 10 (2017): 933–40. http://dx.doi.org/10.1139/cjp-2016-0368.
Texto completo da fonteGovatsi, Katerina, Aspasia Antonelou, Labrini Sygellou, Stylianos G. Neophytides, and Spyros N. Yannopoulos. "Hybrid ZnO/MoS2 Core/Sheath Heterostructures for Photoelectrochemical Water Splitting." Applied Nano 2, no. 3 (2021): 148–61. http://dx.doi.org/10.3390/applnano2030012.
Texto completo da fonteNaya, Shin-ichi, Tadahiro Niwa, Ryo Negishi, Hisayoshi Kobayashi, and Hiroaki Tada. "Multi-Electron Oxygen Reduction by a Hybrid Visible-Light-Photocatalyst Consisting of Metal-Oxide Semiconductor and Self-Assembled Biomimetic Complex." Angewandte Chemie International Edition 53, no. 50 (2014): 13894–97. http://dx.doi.org/10.1002/anie.201408352.
Texto completo da fonteNaya, Shin-ichi, Tadahiro Niwa, Ryo Negishi, Hisayoshi Kobayashi, and Hiroaki Tada. "Multi-Electron Oxygen Reduction by a Hybrid Visible-Light-Photocatalyst Consisting of Metal-Oxide Semiconductor and Self-Assembled Biomimetic Complex." Angewandte Chemie 126, no. 50 (2014): 14114–17. http://dx.doi.org/10.1002/ange.201408352.
Texto completo da fonte