Literatura científica selecionada sobre o tema "Hydroxyde de nickel"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Hydroxyde de nickel".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Hydroxyde de nickel"
Dubé, Patrick, Louis Brossard e Hugues Ménard. "Hydrogénation électrocatalytique sur des catalyseurs composites de nickel et hydroxyde d'aluminium en cellule dynamique". Canadian Journal of Chemistry 80, n.º 4 (1 de abril de 2002): 345–49. http://dx.doi.org/10.1139/v02-024.
Texto completo da fonteShang, Wei, Chang Jiu Liu e Yu Qing Wen. "Morphology and Electrochemical Performance of Amorphous Nickel Hydroxide Added Anion". Advanced Materials Research 834-836 (outubro de 2013): 466–71. http://dx.doi.org/10.4028/www.scientific.net/amr.834-836.466.
Texto completo da fonteBalram, Anirudh, Jie Chao Jiang, Moisés Hernández Fernández e Dennis De Sheng Meng. "Nickel-Cobalt Double Hydroxide Decorated Carbon Nanotubes via Aqueous Electrophoretic Deposition towards Catalytic Glucose Detection". Key Engineering Materials 654 (julho de 2015): 70–75. http://dx.doi.org/10.4028/www.scientific.net/kem.654.70.
Texto completo da fonteHall, David S., David J. Lockwood, Christina Bock e Barry R. MacDougall. "Nickel hydroxides and related materials: a review of their structures, synthesis and properties". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 471, n.º 2174 (fevereiro de 2015): 20140792. http://dx.doi.org/10.1098/rspa.2014.0792.
Texto completo da fonteSidorova, Elena N., Ella L. Dzidziguri, Yulia P. Vinichenko, Dmitriy Yu Ozherelkov, Alexander S. Shinkaryov, Alexander A. Gromov e Anton Yu Nalivaiko. "Metal Nanoparticles Formation from Nickel Hydroxide". Materials 13, n.º 20 (21 de outubro de 2020): 4689. http://dx.doi.org/10.3390/ma13204689.
Texto completo da fonteYin, Jingzhou, Guolang Zhou, Xiaoliang Gao, Jiaqi Chen, Lili Zhang, Jiaying Xu, Pusu Zhao e Feng Gao. "α- and β-Phase Ni-Mg Hydroxide for High Performance Hybrid Supercapacitors". Nanomaterials 9, n.º 12 (25 de novembro de 2019): 1686. http://dx.doi.org/10.3390/nano9121686.
Texto completo da fonteRamesh, T. N., P. Vishnu Kamath e C. Shivakumara. "Classification of stacking faults and their stepwise elimination during the disorder → order transformation of nickel hydroxide". Acta Crystallographica Section B Structural Science 62, n.º 4 (12 de julho de 2006): 530–36. http://dx.doi.org/10.1107/s0108768106013188.
Texto completo da fonteThimmasandra Narayan, Ramesh. "Effect of Crystallinity of β- and βbc-Nickel Hydroxide Samples on Chemical Cycling". Indian Journal of Materials Science 2015 (27 de julho de 2015): 1–7. http://dx.doi.org/10.1155/2015/820193.
Texto completo da fonteRamesh, Thimmasandra Narayan. "Effect of Substituents on the Electrochemical Reversible Discharge Capacity of Cobalt Hydroxide Electrodes". Journal of New Materials for Electrochemical Systems 18, n.º 2 (30 de maio de 2015): 091–93. http://dx.doi.org/10.14447/jnmes.v18i2.375.
Texto completo da fonteLiu, Chang Jiu, Chun Xiao Xing, Shi Juan Chen e Yan Wei Li. "Structure and Electrochemical Performance of Amorphous Nickel Hydroxide Doped with La and Al". Materials Science Forum 663-665 (novembro de 2010): 1217–20. http://dx.doi.org/10.4028/www.scientific.net/msf.663-665.1217.
Texto completo da fonteTeses / dissertações sobre o assunto "Hydroxyde de nickel"
Carlach, Philippe. "Précipitation homogène ou polyphasique par décomplexation thermique : application à la synthèse d'hydroxydes de nickel à partir de solutions ammoniacales". Paris, ENMP, 2003. http://www.theses.fr/2003ENMP1149.
Texto completo da fonteGourrier, Laure. "Contribution à l'étude de l'hydroxyde de Nickel : aspects fondamentaux et influence du Zinc". Thesis, Montpellier 2, 2011. http://www.theses.fr/2011MON20232/document.
Texto completo da fonteThis work may be separated in two parts. First, we report the study of a model compound of nickel hydroxide. X-ray diffraction shows that this compound has a better crystallinity than the standard nickel hydroxides used in commercial battery. Scanning Electron Microscopy revealed that the powder of this model hydroxide is composed of hexagonal grains whose dimension is larger than micrometer and who are formed of single-crystals, also hexagonal, stacked in a well ordered way. The electrochemical measurements show that this nickel hydroxide exhibit interesting redox properties. The particular morphology of the compound gives single-crystal type behavior in Raman spectroscopy. Therefore, in-situ measurements combining electrochemical measurements and Raman spectroscopy, performed on a single microscopic hexagonal plate, are proposed. Preliminary results emphasize that this experiment may help us to improve our understanding of the fundamental redox mechanism taking place in nickel hydroxide.Secondly, we study the electrochemical behavior of a nickel electrode in the presence of Zinc in the electrolyte. Industrial-type electrodes were prepared from a standard undoped nickel hydroxide. Then, samples obtained after electrochemical test were characterized by SEM, XRD, IR and EXAFS. The later which turned out to be the most appropriate for the analysis of our electrode materials, allowed us to get deeper insights in the insertion of zinc in the structure of Ni(OH)2
MANCIER, VALERIE. "Contribution a l'etude de l'electrode a hydroxyde de nickel : application aux accumulateurs nickel-cadmium ; determination de l'etat de charge et modelisation". Reims, 1995. http://www.theses.fr/1995REIMS023.
Texto completo da fonteLi, Min. "Preparation of composite materials for high-performance supercapacitors". Thesis, Lille 1, 2020. http://www.theses.fr/2020LIL1I011.
Texto completo da fonteSupercapacitors, as energy storage devices, have drawn great attention in our daily life to bridge the gap between batteries and capacitors. Therefore, the preparation of high-performance material electrodes for supercapacitors plays a vital role in the future technological developments. In this context, layered double hydroxides (LDHs) and Ni(OH)2 have been recognized as promising electrodes for supercapacitors, owing to their fast redox reaction and battery-type behavior.The Chapter 1 of my PhD work gives a brief historic overview, principles and mechanism of energy storage, electrode materials of supercapacitors and the corresponding characterization methods. In Chapter 2, after a brief introduction on LDHs and their investigation as electrode materials in supercapacitors, we summarize our results obtained on Ni-based LDHs as electrodes for supercapacitors. Firstly, NiFe LDHs on Ni foam (NF) coated with reduced graphene oxide (NiFe LDHs/rGO/NF) was prepared by electrochemical deposition method. NiFe LDHs/rGO/NF achieved enhanced specific capacity (585 C g-1 at a current density of 5 A g-1). Additionally, a flexible asymmetric supercapacitor was assembled using NiFe LDHs/rGO/NF as the cathode and mesoporous carbon (MC) coated on NF as the anode. The supercapacitor exhibited an energy density of 17.71 Wh kg-1 at a power density of 348.49 W kg-1. Secondly, NiAl LDHs coated on carbon spheres (CS) supported by Ni foam (NiAl LDHs@CS/NF) electrodes were synthesized by a facile hydrothermal method. The performance of the prepared materials as binder-free electrodes in supercapacitors was assessed. The NiAl LDHs@CS/NF electrode achieved the largest areal capacity (1042 mC cm-2), as compared to the areal capacity values attained by NiFe LDHs@CS/NF (705.8 mC cm-2) and NiCr LDHs@CS/NF (814.9 mC cm-2) at 1 mA cm-2. Therefore, a hybrid supercapacitor device comprising NiAl LDHs@CS/NF as the positive electrode and N-doped reduced graphene/NF as the negative electrode was assembled, which attained an energy density of 43 μWh cm−2 at a power density of 0.805 mW cm−2. The hybrid supercapacitor was successfully applied to operate a windmill device continuously for 32 s. Finally, NiMnCr LDHs-carbon spheres modified Ni foam (NiMnCr LDHs@CS/NF) nanocomposite was prepared using a two-step hydrothermal process and exhibited a high specific capacity of 569 C g-1 at 3 A g-1 with good reversibility and stability. Furthermore, a hybrid supercapacitor was fabricated using NiMnCr LDHs@CS/NF as the positive electrode and FeOOH coated on NF (FeOOH/NF) as the negative electrode. The energy storage device reached an energy density of 48 Wh kg-1 at a power density of 402.7 W kg-1. In Chapter 3, Ni(OH)2@CuO@Cu foam binder-free electrodes were fabricated by a two-step process at room temperature with various deposition times (30, 50, 90, 150 and 200s). Among all the samples, Ni(OH)2@CuO@Cu-150 exhibited the largest areal capacity of 7063 mC cm-2 at 20 mA cm-2, and was therefore chosen as the positive electrode in a hybrid supercapacitor. Using N-doped reduced graphene oxide on nickel foam (N-rGO/NF) as the negative electrode, a hybrid supercapacitor was assembled. It displayed good flexibility, cycling stability and high areal energy density of 130.4 μWh cm−2 at a power density of 1.6 mW cm−2.In conclusion, all the results obtained in this thesis imply the promising potential application of Ni-based hydroxide composites as energy storage devices and provide valuable highlights to the exploration of new composite materials for supercapacitor electrodes in future works (Chapter 4)
Meyer, Michaël. "Synthèse et propriétés d'organisation de particules plaquettaires d'hydroxyde de nickel dispersées par voie électrostatique". Paris 6, 2003. http://www.theses.fr/2003PA066386.
Texto completo da fonteBounif, Mohamed. "Modélisation et affinement des structures locales de matériaux désordonnés à base d'oxyde-hydroxyde de nickel par spectroscopie d'absorption des rayons X". Phd thesis, Université Paris-Est, 2009. http://tel.archives-ouvertes.fr/tel-00476908.
Texto completo da fonteAdán, Mas Alberto. "Advanced metal graphene composite electrodes for a new generation of electrochemical energy storage devices". Thesis, Bordeaux, 2018. http://www.theses.fr/2018BORD0181/document.
Texto completo da fonteSupercapacitors are the focus of much research at the present time. They offer a potential solution for reversible energy storage in the fields of space, aircrafts or transportation (hybrid vehicles). An important research line, aiming at increasing both energy and power densities, is devoted to asymmetric transition metal oxides / activated carbon (C) systems. RuO2-based devices exhibit the highest capacitance, more than 700 F/g, but their cost limits the applications to small electronic devices. Less expensive oxides such as cobalt oxides (especially Co3O4), MnO2, V2O5, Fe3O4, NiO, Ni(OH)2, as well as electrically conducting polymers, have been extensively studied in the past decades, or used in commercial devices; they EACH exhibit each drawbacks and advantages with regard to applications. But no system has been investigated as much as the C/MnO2 one, which is particularly interesting because it can work in aqueous media at tensions up to 2 V, and high stability in ageing has been demonstrated. Nevertheless, the performances of the system, especially in terms of power density, are limited by the poor electronic conductivity of MnO2. This problem is usually solved by simply mixing conductive carbon materials (carbon black, CNTs…) with MnO2 or by developing more elaborated grafting or decoration strategies. The combination of oxide and carbonaceous species is widely reported in the literature, whereas combining oxides with different natures is less frequently encountered. We propose in this project to synthesize and develop original materials enhancing, through a synergistic effect, the interesting properties of manganese, cobalt and nickel oxide/hydroxide, the drawbacks of each component being overbalanced by the good complementary properties of the other components. We aim at gathering in one single material (or composite), the good pseudocapacitive behavior of manganese, the good electronic conductivity associated to cobalt oxides, the high capacity of nickel hydroxide, as well as the enhanced conduction properties of carbon. The present PhD project aims at designing and manufacturing new classes of hybrid composite electrodes based on assemblies of graphene (for enhanced double layer capacitance) and porous transition metals oxides (for additional faradaic capacitance due to multiple reversible redox processes) directly applied on metallic current collectors. The combined advantages of graphene with those of transition metals oxides will enable supercapacitors with high energy density, working in environmentally friendly aqueous electrolytes, which are an acknowledged need
A procura crescente de energia em setores distintos, como residencial, transporte e industrial, bem como a proliferação de fontes renováveis de produção de energia, exigem novos e mais eficientes dispositivos de armazenamento de energia. Consequentemente, tem-se observado um interesse crescente na produção e engenharia de materiais para armazenamento de energia. Muito dos esforços de R&D estão centrados no desenvolvimento de materiais nanoestruturados que possam responder aos requisitos da aplicação, tais como densidade de energia, densidade de potência e estabilidade face à ciclagem do dispositivo. Presentemente são muitos os materiais investigados como potenciais candidatos para elétrodos para dispositivos de armazenamento de energia por via eletroquímia, nomeadamente baterias, condensadores, pseudocondensadores ou supercondensadores. O objetivo do presente trabalho é produzir e estudar novos materiais com uma resposta eletroquímica intermédia entre um elétrodo típico de supercondensador e um elétrodo típico de bateria, também conhecidos como elétrodos híbridos. Por essa razão, selecionaram-se hidróxidos e óxidos de níquel e cobalto devido à sua elevada atividade eletroquímica e baixo custo. Estes materiais foram combinados com derivados de grafeno, que exibem alta condutividade e elevada área superficial ativa. Portanto, este trabalho foca a síntese e caracterização fisico química e eletroquímica de hidróxidos e óxidos de níquel-cobalto nanoestruturados e sua combinação com óxido de grafeno reduzido para aplicações de armazenamento de energia. A síntese foi efectuada por duas vias distintas: eletrodeposição e exfoliação. A eletrodeposição é usada para obter hidróxidos e óxidos de níquel-cobalto em combinação com óxido de grafeno reduzido. Os resultados evidenciam um efeito sinérgico quando o óxido de grafeno reduzido é combinado com o (hidr)óxido de níquel- cobalto, isto é, um aumento na capacidade, condutividade e estabilidade do compósito quando comparado com o (hidr)óxido de níquel-cobalto. Neste trabalho é dada especial atenção à espectroscopia de impedância eletroquímica que foi utilizada para avaliar os fenômenos que ocorrem durante a carga e descarga contínua e compreender os processos que ocorrem no material ativo e que resultam na sua degradação. O hidróxido de níquel-cobalto é também preparado por exfoliação, em meio aquoso, por meio da intercalação de lactato, enquanto o tetra-butilamónio é utilizado na exfoliação do óxido de níquel-cobalto. A resposta eletroquímica é avaliada em diferentes eletrólitos após reconstrução. Os resultados revelam a influência das espécies intercaladas durante o processo de exfoliação: quando a exfoliação é realizada para fins de armazenamento de energia, as espécies intercaladas e a força da interação com o material ativo devem ser consideradas de antemão para evitar o bloqueio superficial ou inibição da interação elétrodo-eletrólito. Os resultados mostraram que a exfoliação é uma rota promissora para aumentar a área de superfície ativa dos materiais, um parâmetro crítico no desempenho eletroquímico dos materiais dos eletrodos. Nesta dissertação é também estudado o mecanismo de carga-descarga do hidróxido de níquel-cobalto, que ainda não está completamente entendido. Assim, compreender esse mecanismo é um passo crítico para otimizar a morfologia e o desempenho do material e para projetar futuros dispositivos de armazenamento de energia. Para esclarecer os processos que ocorrem durante a carga, aplica-se o modelo de Mott-Schottky foi aplicado parade modo a avaliar a variação da conductividade do material e da sua capacidade na interface elétrodo-eletrólito. [...]
Gautier, Laurent. "Influence du cobalt sur le comportement de l'hydroxyde de nickel dans les batteries alcalines : du substituant au collecteur de charges". Phd thesis, Université Sciences et Technologies - Bordeaux I, 1995. http://tel.archives-ouvertes.fr/tel-00142532.
Texto completo da fonteLaksono, Endang Widjajanti. "Etude de l'interaction de l'ammoniac avec des surfaces de Ni(111) pré-traitées sous oxygène et influence de l'hydroxylation". Paris 6, 2001. http://www.theses.fr/2001PA066446.
Texto completo da fonteROCHE, BERTRAND. "Preparation de poudres de nickel par le procede polyol a partir de precurseurs hydroxydes et hydroxy-carbonates de nickel". Amiens, 1993. http://www.theses.fr/1993AMIES026.
Texto completo da fonteLivros sobre o assunto "Hydroxyde de nickel"
Bode, H. Study of nickel hydroxide electrodes II oxidation products of nickel (II) hydroxides. Washington, DC: National Aeronautics and Space Administration, 1986.
Encontre o texto completo da fonteThomas, Martin Alexander. Studies relating to the nickel hydroxide electrode. Birmingham: Universityof Birmingham, 1988.
Encontre o texto completo da fonteSymposium on Nickel Hydroxide Electrodes (1989 Hollywood, Fla.). Proceedings of the Symposium on Nickel Hydroxide Electrodes. Pennington, N.J. (10 S. Main St., Pennington 08534-2896): Electrochemical Society, 1990.
Encontre o texto completo da fonteRobertson, Kevin. Characterization of nickel hydroxide sludge using the variable pressure SEM. Montréal, Qué: Dept.of Mining, Metals and Materials Engineering, McGill University, 2004.
Encontre o texto completo da fonteGraydon, J. W. Corrosion of nickel and stainless steels in concentrated lithium hydroxide solutions. Toronto: Dept. of Chemical Engineering and Applied Chemistry, University of Toronto, 1990.
Encontre o texto completo da fonteWhittenberger, J. Daniel. Mechanical properties of pure nickel alloys after long term exposures to LiOH and vacuum at 775 K. [Washington, D.C.]: NASA, 1990.
Encontre o texto completo da fonteCorrigan. Nickel Hydroxide Electrodes. Electrochemical Society, 1990.
Encontre o texto completo da fonteB, Lafage, Leonardi J e United States. National Aeronautics and Space Administration., eds. Improvement of the process for electrochemical impregnation of nickel hydroxide electrodes. Washington DC: National Aeronautics and Space Administration, 1986.
Encontre o texto completo da fonteParker, Philip M. The 2007-2012 World Outlook for Nickel Compounds Excluding Nickel Oxides, Hydroxides, Nickel Chloride, and Nickel Sulfate. ICON Group International, Inc., 2006.
Encontre o texto completo da fonteThe 2006-2011 World Outlook for Nickel Compounds Excluding Nickel Oxides, Hydroxides, Nickel Chloride, and Nickel Sulfate. Icon Group International, Inc., 2005.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Hydroxyde de nickel"
McBreen, James. "Nickel Hydroxides". In Handbook of Battery Materials, 149–68. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011. http://dx.doi.org/10.1002/9783527637188.ch5.
Texto completo da fonteCoudun, C., e Jean-François Hochepied. "Precipitation of Nickel Hydroxides from Nickel Dodecylsulphate". In Solid State Phenomena, 35–40. Stafa: Trans Tech Publications Ltd., 2005. http://dx.doi.org/10.4028/3-908451-10-8.35.
Texto completo da fonteOkamoto, T., Jian Guang Yang, Kotaro Kuroda, R. Ichino e Masazumi Okido. "Preparation of Size and Aggregation Controlled Nickel Oxalate Dihydrate Particles from Nickel Hydroxide". In THERMEC 2006 Supplement, 581–86. Stafa: Trans Tech Publications Ltd., 2006. http://dx.doi.org/10.4028/0-87849-429-4.581.
Texto completo da fonteWu, Xiao Feng, Yun Fa Chen, Qun Yan Li e L. Q. Wei. "Preparation and Characterization of Integral Hollow Microspheres of Nickel Hydroxide and Nickel Oxide". In Solid State Phenomena, 187–90. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/3-908451-30-2.187.
Texto completo da fonteJenssen, Ina Beate, Mona Aufles Hines, Ole Morten Dotterud, Oluf Bøckman e Jens-Petter Andreassen. "Filtration Properties of Ferric Hydroxide Precipitate in Nickel Production". In The Minerals, Metals & Materials Series, 1373–81. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-95022-8_112.
Texto completo da fonteSchäfer, Hans-Jürgen. "Oxidation of organic compounds at the nickel hydroxide electrode". In Topics in Current Chemistry, 101–29. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/3-540-17871-6_13.
Texto completo da fonteMaizelis, Antonina A. "Electrooxidation of Ethanol on Nickel-Copper Multilayer Metal Hydroxide Electrode". In Springer Proceedings in Physics, 59–68. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-17759-1_4.
Texto completo da fonteMaizelis, A. "Nickel–Copper Hydroxide Multilayer Coating as Anode Material for Methanol Electro-oxidation". In Springer Proceedings in Physics, 35–45. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-52268-1_3.
Texto completo da fonteMarathey, Priyanka, Sakshum Khanna, Roma Patel, Indrajit Mukhopadhyay e Abhijit Ray. "Pseudocapacitive Energy Storage in Copper Oxide and Hydroxide Nanostructures Casted Over Nickel-Foam". In Proceedings of the 7th International Conference on Advances in Energy Research, 1383–91. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5955-6_131.
Texto completo da fonteMaizelis, A., e B. Bairachniy. "Multilayer Nickel–Copper Metal Hydroxide Coating as Cathode Material for Hydrogen Evolution Reaction". In Lecture Notes in Mechanical Engineering, 97–107. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-6133-3_10.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Hydroxyde de nickel"
Song, Quansheng, C. H. Chiu e S. L. I. Chan. "Nanocrystalline Nickel Hydroxide in Pasted Nickel Electrodes for Rechargeable Nickel Batteries". In 2006 International Conference on Nanoscience and Nanotechnology. IEEE, 2006. http://dx.doi.org/10.1109/iconn.2006.340567.
Texto completo da fonteBakar, M. A., M. A. A. Hamid, A. Jalar e R. Shamsudin. "Transformation nanostructured nickel hydroxide to nickel oxide film by aqueous chemical growth". In 2012 NATIONAL PHYSICS CONFERENCE: (PERFIK 2012). AIP, 2013. http://dx.doi.org/10.1063/1.4803625.
Texto completo da fonteSantos, G. A., A. G. S. G. Silva, L. S. Sanches, H. A. Ponte e C. E. B. Marino. "Electrochemical detection of hydrogen uptake in electrodeposited nickel/nickel hydroxide system to prevent corrosion process". In 1st International Seminar on Industrial Innovation in Electrochemistry. São Paulo: Editora Edgard Blücher, 2014. http://dx.doi.org/10.5151/chempro-s3ie-08.
Texto completo da fonteZhou, You, Zhengyong Huang, Jian Li e Weigen Chen. "Nickel Cobalt Hydroxide/Reduced Graphene Oxide and Its Electrochemical Performance". In 2020 IEEE International Conference on High Voltage Engineering and Application (ICHVE). IEEE, 2020. http://dx.doi.org/10.1109/ichve49031.2020.9279677.
Texto completo da fonteByrne, Kelly, William Hawker e James Vaughan. "Effect of key parameters on the selective acid leach of nickel from mixed nickel-cobalt hydroxide". In PROCEEDINGS OF THE 1ST INTERNATIONAL PROCESS METALLURGY CONFERENCE (IPMC 2016). Author(s), 2017. http://dx.doi.org/10.1063/1.4974412.
Texto completo da fonteQiao, Jie, Haifen Li, Zhongpin Li, Shaomin Shuang e Chuan Dong. "Study on Electrochemical Behavior of Methane at Nickel Electrode Modified with Nickel Hydroxide in Alkaline Solution". In 2007 International Conference on Information Acquisition. IEEE, 2007. http://dx.doi.org/10.1109/icia.2007.4295693.
Texto completo da fonteBhat, Karthik S., e H. S. Nagaraja. "Two-dimensional nickel hydroxide nanosheets as high performance pseudo-capacitor electrodes". In ADVANCES IN MECHANICAL DESIGN, MATERIALS AND MANUFACTURE: Proceedings of the First International Conference on Design, Materials and Manufacture (ICDEM 2018). Author(s), 2018. http://dx.doi.org/10.1063/1.5029633.
Texto completo da fonteCorrigan, Dennis A. "Electrochromic nickel hydroxide films and the effects of foreign metal ions". In Institutes for Advanced Optical Technologies, editado por Carl M. Lampert e Claes-Göran Granqvist. SPIE, 1990. http://dx.doi.org/10.1117/12.2283622.
Texto completo da fonteViswanthan, Aranganathan, e Adka Nityananda Shetty. "Electrochemical comparison of nickel and nickel hydroxide nanoparticles composited with reduced graphene oxide and polyaniline for their supercapacitor application". In ADVANCES IN MECHANICAL DESIGN, MATERIALS AND MANUFACTURE: Proceedings of the First International Conference on Design, Materials and Manufacture (ICDEM 2018). Author(s), 2018. http://dx.doi.org/10.1063/1.5029642.
Texto completo da fonteZhang, Hongyu, Zhikun Zhan, Yuliang Zhao, Xiaopeng Sha, Xiaodong Yu, Hui Sun, Lijia Gu, Jiali Liu e Lianqing Liu. "Electrochemical Detection of Insulin Based on Screen Printed Electrode Modified by Nickel Hydroxide". In 2018 IEEE 1st International Conference on Micro/Nano Sensors for AI, Healthcare, and Robotics (NSENS). IEEE, 2018. http://dx.doi.org/10.1109/nsens.2018.8713631.
Texto completo da fonteRelatórios de organizações sobre o assunto "Hydroxyde de nickel"
Mavis, Bora. Homogeneous Precipitation of Nickel Hydroxide Powders. Office of Scientific and Technical Information (OSTI), janeiro de 2003. http://dx.doi.org/10.2172/822049.
Texto completo da fonteCrocker, Robert W., e Rolf H. Muller. Structural transformation of nickel hydroxide films during anodic oxidation. Office of Scientific and Technical Information (OSTI), maio de 1992. http://dx.doi.org/10.2172/10158026.
Texto completo da fonteCrocker, R. W., e R. H. Muller. Structural transformation of nickel hydroxide films during anodic oxidation. Office of Scientific and Technical Information (OSTI), maio de 1992. http://dx.doi.org/10.2172/5058501.
Texto completo da fonteWidjaja, Agus. Synthesis and characterization of nickel hydroxide powders for battery application. Office of Scientific and Technical Information (OSTI), outubro de 1997. http://dx.doi.org/10.2172/348926.
Texto completo da fonteQian, X., H. Sambe e D. E. Ramaker. Quantitative Interpretation of K-Edge NEXAFS Data for Various Nickel Hydroxides and the Charged Nickel Electrode. Fort Belvoir, VA: Defense Technical Information Center, janeiro de 1996. http://dx.doi.org/10.21236/ada304545.
Texto completo da fonteMansour, A. N., e C. A. Melendres. X-Ray Absorption Spectra and Structure of Some Nickel Oxides (Hydroxides). Fort Belvoir, VA: Defense Technical Information Center, junho de 1994. http://dx.doi.org/10.21236/ada281305.
Texto completo da fonteHu Lin Li, D. H. Robertson, J. Q. Chambers e D. T. Hobbs. Electrochemical reduction of nitrate and nitrite in concentrated sodium hydroxide at platinum and nickel electrodes. Office of Scientific and Technical Information (OSTI), outubro de 1996. http://dx.doi.org/10.2172/385582.
Texto completo da fonteLi, H., J. Q. Chambers e D. T. Hobbs. Electroreduction of nitrate ions in concentrated sodium hydroxide solutions at lead, zinc, nickel, and phthalocyanine-modified electrodes. Office of Scientific and Technical Information (OSTI), dezembro de 1987. http://dx.doi.org/10.2172/665993.
Texto completo da fonte