Artigos de revistas sobre o tema "Ice sheet and climate interactions"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Ice sheet and climate interactions".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Scherrenberg, Meike D. W., Constantijn J. Berends, Lennert B. Stap e Roderik S. W. van de Wal. "Modelling feedbacks between the Northern Hemisphere ice sheets and climate during the last glacial cycle". Climate of the Past 19, n.º 2 (8 de fevereiro de 2023): 399–418. http://dx.doi.org/10.5194/cp-19-399-2023.
Texto completo da fonteGregory, J. M., O. J. H. Browne, A. J. Payne, J. K. Ridley e I. C. Rutt. "Modelling large-scale ice-sheet–climate interactions following glacial inception". Climate of the Past 8, n.º 5 (11 de outubro de 2012): 1565–80. http://dx.doi.org/10.5194/cp-8-1565-2012.
Texto completo da fonteGregory, J. M., O. J. H. Browne, A. J. Payne, J. K. Ridley e I. C. Rutt. "Modelling large-scale ice-sheet–climate interactions following glacial inception". Climate of the Past Discussions 8, n.º 1 (9 de janeiro de 2012): 169–213. http://dx.doi.org/10.5194/cpd-8-169-2012.
Texto completo da fonteAbe-Ouchi, Ayako, e Bette Otto-Bliesner. "Ice sheet-climate interactions during the ice age cycle". PAGES news 17, n.º 2 (junho de 2009): 73–74. http://dx.doi.org/10.22498/pages.17.2.73.
Texto completo da fonteNIU, LU, GERRIT LOHMANN, SEBASTIAN HINCK, EVAN J. GOWAN e UTA KREBS-KANZOW. "The sensitivity of Northern Hemisphere ice sheets to atmospheric forcing during the last glacial cycle using PMIP3 models". Journal of Glaciology 65, n.º 252 (3 de julho de 2019): 645–61. http://dx.doi.org/10.1017/jog.2019.42.
Texto completo da fonteXie, Zhiang, Dietmar Dommenget, Felicity S. McCormack e Andrew N. Mackintosh. "GREB-ISM v1.0: A coupled ice sheet model for the Globally Resolved Energy Balance model for global simulations on timescales of 100 kyr". Geoscientific Model Development 15, n.º 9 (10 de maio de 2022): 3691–719. http://dx.doi.org/10.5194/gmd-15-3691-2022.
Texto completo da fonteDutton, Andrea, EJ Stone e A. Carlson. "Ice sheet climate interactions: Implications for coastal engineering". PAGES news 21, n.º 1 (março de 2013): 40. http://dx.doi.org/10.22498/pages.21.1.40.
Texto completo da fonteStap, L. B., R. S. W. van de Wal, B. de Boer, R. Bintanja e L. J. Lourens. "Interaction of ice sheets and climate during the past 800 000 years". Climate of the Past Discussions 10, n.º 3 (23 de junho de 2014): 2547–94. http://dx.doi.org/10.5194/cpd-10-2547-2014.
Texto completo da fonteStap, L. B., R. S. W. van de Wal, B. de Boer, R. Bintanja e L. J. Lourens. "Interaction of ice sheets and climate during the past 800 000 years". Climate of the Past 10, n.º 6 (4 de dezembro de 2014): 2135–52. http://dx.doi.org/10.5194/cp-10-2135-2014.
Texto completo da fonteVan Breedam, Jonas, Philippe Huybrechts e Michel Crucifix. "A Gaussian process emulator for simulating ice sheet–climate interactions on a multi-million-year timescale: CLISEMv1.0". Geoscientific Model Development 14, n.º 10 (25 de outubro de 2021): 6373–401. http://dx.doi.org/10.5194/gmd-14-6373-2021.
Texto completo da fonteSmith, Robin S., Steve George e Jonathan M. Gregory. "FAMOUS version xotzt (FAMOUS-ice): a general circulation model (GCM) capable of energy- and water-conserving coupling to an ice sheet model". Geoscientific Model Development 14, n.º 9 (17 de setembro de 2021): 5769–87. http://dx.doi.org/10.5194/gmd-14-5769-2021.
Texto completo da fonteGoelzer, Heiko, Philippe Huybrechts, Marie-France Loutre e Thierry Fichefet. "Last Interglacial climate and sea-level evolution from a coupled ice sheet–climate model". Climate of the Past 12, n.º 12 (15 de dezembro de 2016): 2195–213. http://dx.doi.org/10.5194/cp-12-2195-2016.
Texto completo da fonteStap, Lennert B., Constantijn J. Berends, Meike D. W. Scherrenberg, Roderik S. W. van de Wal e Edward G. W. Gasson. "Net effect of ice-sheet–atmosphere interactions reduces simulated transient Miocene Antarctic ice-sheet variability". Cryosphere 16, n.º 4 (11 de abril de 2022): 1315–32. http://dx.doi.org/10.5194/tc-16-1315-2022.
Texto completo da fonteBradley, Sarah L., Raymond Sellevold, Michele Petrini, Miren Vizcaino, Sotiria Georgiou, Jiang Zhu, Bette L. Otto-Bliesner e Marcus Lofverstrom. "Surface mass balance and climate of the Last Glacial Maximum Northern Hemisphere ice sheets: simulations with CESM2.1". Climate of the Past 20, n.º 1 (24 de janeiro de 2024): 211–35. http://dx.doi.org/10.5194/cp-20-211-2024.
Texto completo da fonteEly, Jeremy C., Chris D. Clark, David Small e Richard C. A. Hindmarsh. "ATAT 1.1, the Automated Timing Accordance Tool for comparing ice-sheet model output with geochronological data". Geoscientific Model Development 12, n.º 3 (12 de março de 2019): 933–53. http://dx.doi.org/10.5194/gmd-12-933-2019.
Texto completo da fonteNowicki, Sophie, Heiko Goelzer, Hélène Seroussi, Anthony J. Payne, William H. Lipscomb, Ayako Abe-Ouchi, Cécile Agosta et al. "Experimental protocol for sea level projections from ISMIP6 stand-alone ice sheet models". Cryosphere 14, n.º 7 (23 de julho de 2020): 2331–68. http://dx.doi.org/10.5194/tc-14-2331-2020.
Texto completo da fonteSiahaan, Antony, Robin S. Smith, Paul R. Holland, Adrian Jenkins, Jonathan M. Gregory, Victoria Lee, Pierre Mathiot, Antony J. Payne, Jeff K. Ridley e Colin G. Jones. "The Antarctic contribution to 21st-century sea-level rise predicted by the UK Earth System Model with an interactive ice sheet". Cryosphere 16, n.º 10 (7 de outubro de 2022): 4053–86. http://dx.doi.org/10.5194/tc-16-4053-2022.
Texto completo da fonteFong, Peter. "Influence Of Ice Sheets On Climate and Ice-Sheet Dynamics". Annals of Glaciology 14 (1990): 335. http://dx.doi.org/10.3189/s026030550000896x.
Texto completo da fonteFong, Peter. "Influence Of Ice Sheets On Climate and Ice-Sheet Dynamics". Annals of Glaciology 14 (1990): 335. http://dx.doi.org/10.1017/s026030550000896x.
Texto completo da fonteQuiquet, Aurélien, Didier M. Roche, Christophe Dumas, Nathaëlle Bouttes e Fanny Lhardy. "Climate and ice sheet evolutions from the last glacial maximum to the pre-industrial period with an ice-sheet–climate coupled model". Climate of the Past 17, n.º 5 (19 de outubro de 2021): 2179–99. http://dx.doi.org/10.5194/cp-17-2179-2021.
Texto completo da fonteStap, Lennert B., Roderik S. W. van de Wal, Bas de Boer, Richard Bintanja e Lucas J. Lourens. "The influence of ice sheets on temperature during the past 38 million years inferred from a one-dimensional ice sheet–climate model". Climate of the Past 13, n.º 9 (25 de setembro de 2017): 1243–57. http://dx.doi.org/10.5194/cp-13-1243-2017.
Texto completo da fonteRoe, Gerard H. "Modeling precipitation over ice sheets: an assessment using Greenland". Journal of Glaciology 48, n.º 160 (2002): 70–80. http://dx.doi.org/10.3189/172756502781831593.
Texto completo da fonteZwally, H. Jay. "Ice-Sheet Elevation Change". Annals of Glaciology 14 (1990): 366. http://dx.doi.org/10.3189/s0260305500009460.
Texto completo da fonteZwally, H. Jay. "Ice-Sheet Elevation Change". Annals of Glaciology 14 (1990): 366. http://dx.doi.org/10.1017/s0260305500009460.
Texto completo da fonteHinck, Sebastian, Evan J. Gowan, Xu Zhang e Gerrit Lohmann. "PISM-LakeCC: Implementing an adaptive proglacial lake boundary in an ice sheet model". Cryosphere 16, n.º 3 (14 de março de 2022): 941–65. http://dx.doi.org/10.5194/tc-16-941-2022.
Texto completo da fonteO'Neill, James F., Tamsin L. Edwards, Daniel F. Martin, Courtney Shafer, Stephen L. Cornford, Hélène L. Seroussi, Sophie Nowicki, Mira Adhikari e Lauren J. Gregoire. "ISMIP6-based Antarctic projections to 2100: simulations with the BISICLES ice sheet model". Cryosphere 19, n.º 2 (4 de fevereiro de 2025): 541–63. https://doi.org/10.5194/tc-19-541-2025.
Texto completo da fonteHoang, Thi-Khanh-Dieu, Aurélien Quiquet, Christophe Dumas, Andreas Born e Didier M. Roche. "Using a multi-layer snow model for transient paleo-studies: surface mass balance evolution during the Last Interglacial". Climate of the Past 21, n.º 1 (7 de janeiro de 2025): 27–51. https://doi.org/10.5194/cp-21-27-2025.
Texto completo da fonteKennedy, Joseph H., e Erin C. Pettit. "The response of fabric variations to simple shear and migration recrystallization". Journal of Glaciology 61, n.º 227 (2015): 537–50. http://dx.doi.org/10.3189/2015jog14j156.
Texto completo da fonteBerger, A., Th Fichefet, H. Gallée, I. Marsiat, C. Tricot e J. P. van Ypersele. "Physical interactions within a coupled climate model over the last glacial–interglacial cycle". Transactions of the Royal Society of Edinburgh: Earth Sciences 81, n.º 4 (1990): 357–69. http://dx.doi.org/10.1017/s026359330002085x.
Texto completo da fonteAlvarez-Solas, Jorge, Rubén Banderas, Alexander Robinson e Marisa Montoya. "Ocean-driven millennial-scale variability of the Eurasian ice sheet during the last glacial period simulated with a hybrid ice-sheet–shelf model". Climate of the Past 15, n.º 3 (4 de junho de 2019): 957–79. http://dx.doi.org/10.5194/cp-15-957-2019.
Texto completo da fonteBORN, ANDREAS. "Tracer transport in an isochronal ice-sheet model". Journal of Glaciology 63, n.º 237 (20 de outubro de 2016): 22–38. http://dx.doi.org/10.1017/jog.2016.111.
Texto completo da fonteGoelzer, H., P. Huybrechts, M. F. Loutre, H. Goosse, T. Fichefet e A. Mouchet. "Impact of Greenland and Antarctic ice sheet interactions on climate sensitivity". Climate Dynamics 37, n.º 5-6 (3 de agosto de 2010): 1005–18. http://dx.doi.org/10.1007/s00382-010-0885-0.
Texto completo da fontePunge, H. J., H. Gallée, M. Kageyama e G. Krinner. "Modelling snow accumulation on Greenland in Eemian, glacial inception, and modern climates in a GCM". Climate of the Past 8, n.º 6 (5 de novembro de 2012): 1801–19. http://dx.doi.org/10.5194/cp-8-1801-2012.
Texto completo da fonteAbe-Ouchi, A., T. Segawa e F. Saito. "Climatic Conditions for modelling the Northern Hemisphere ice sheets throughout the ice age cycle". Climate of the Past 3, n.º 3 (19 de julho de 2007): 423–38. http://dx.doi.org/10.5194/cp-3-423-2007.
Texto completo da fonteAbe-Ouchi, A., T. Segawa e F. Saito. "Climatic conditions for modelling the Northern Hemisphere ice sheets throughout the ice age cycle". Climate of the Past Discussions 3, n.º 1 (6 de fevereiro de 2007): 301–36. http://dx.doi.org/10.5194/cpd-3-301-2007.
Texto completo da fonteAndernach, Malena, Marie-Luise Kapsch e Uwe Mikolajewicz. "Impact of Greenland Ice Sheet disintegration on atmosphere and ocean disentangled". Earth System Dynamics 16, n.º 2 (14 de março de 2025): 451–74. https://doi.org/10.5194/esd-16-451-2025.
Texto completo da fonteAlbrecht, Torsten, Meike Bagge e Volker Klemann. "Feedback mechanisms controlling Antarctic glacial-cycle dynamics simulated with a coupled ice sheet–solid Earth model". Cryosphere 18, n.º 9 (19 de setembro de 2024): 4233–55. http://dx.doi.org/10.5194/tc-18-4233-2024.
Texto completo da fonteZhan, Jingang, Hongling Shi, Yong Wang e Yixin Yao. "Complex Principal Component Analysis of Antarctic Ice Sheet Mass Balance". Remote Sensing 13, n.º 3 (29 de janeiro de 2021): 480. http://dx.doi.org/10.3390/rs13030480.
Texto completo da fonteBorreguero, Laura Herraiz, Ruth Mottram e Ivana Cvijanovic. "Discussing Progress in Understanding Ice Sheet—Ocean Interactions: Advanced Climate Dynamics Course 2010: Ice Sheet—Ocean Interactions; Lyngen, Norway, 8–19 June 2010". Eos, Transactions American Geophysical Union 91, n.º 45 (2010): 419. http://dx.doi.org/10.1029/2010eo450006.
Texto completo da fonteBraithwaite, Roger J. "Models of ice-atmosphere interactions for the Greenland ice sheet". Annals of Glaciology 23 (1996): 149–53. http://dx.doi.org/10.3189/s0260305500013379.
Texto completo da fonteBraithwaite, Roger J. "Models of ice-atmosphere interactions for the Greenland ice sheet". Annals of Glaciology 23 (1996): 149–53. http://dx.doi.org/10.1017/s0260305500013379.
Texto completo da fonteRen, Diandong, e Lance M. Leslie. "Three positive feedback mechanisms for ice-sheet melting in a warming climate". Journal of Glaciology 57, n.º 206 (2011): 1057–66. http://dx.doi.org/10.3189/002214311798843250.
Texto completo da fonteBintanja, R., G. J. van Oldenborgh e C. A. Katsman. "The effect of increased fresh water from Antarctic ice shelves on future trends in Antarctic sea ice". Annals of Glaciology 56, n.º 69 (2015): 120–26. http://dx.doi.org/10.3189/2015aog69a001.
Texto completo da fontePérez, Lara F., Paul C. Knutz, John R. Hopper, Marit-Solveig Seidenkrantz, Matt O'Regan e Stephen Jones. "NorthGreen: unlocking records from sea to land in Northeast Greenland". Scientific Drilling 33, n.º 1 (2 de abril de 2024): 33–46. http://dx.doi.org/10.5194/sd-33-33-2024.
Texto completo da fonteGoelzer, Heiko, Sophie Nowicki, Anthony Payne, Eric Larour, Helene Seroussi, William H. Lipscomb, Jonathan Gregory et al. "The future sea-level contribution of the Greenland ice sheet: a multi-model ensemble study of ISMIP6". Cryosphere 14, n.º 9 (17 de setembro de 2020): 3071–96. http://dx.doi.org/10.5194/tc-14-3071-2020.
Texto completo da fonteLe clec'h, Sébastien, Sylvie Charbit, Aurélien Quiquet, Xavier Fettweis, Christophe Dumas, Masa Kageyama, Coraline Wyard e Catherine Ritz. "Assessment of the Greenland ice sheet–atmosphere feedbacks for the next century with a regional atmospheric model coupled to an ice sheet model". Cryosphere 13, n.º 1 (1 de fevereiro de 2019): 373–95. http://dx.doi.org/10.5194/tc-13-373-2019.
Texto completo da fonteZhang, Enze, Ginny Catania e Daniel T. Trugman. "AutoTerm: an automated pipeline for glacier terminus extraction using machine learning and a “big data” repository of Greenland glacier termini". Cryosphere 17, n.º 8 (24 de agosto de 2023): 3485–503. http://dx.doi.org/10.5194/tc-17-3485-2023.
Texto completo da fontePayne, A. J., P. Huybrechts, A. Abe-Ouchi, R. Calov, J. L. Fastook, R. Greve, S. J. Marshall et al. "Results from the EISMINT model intercomparison: the effects of thermomechanical coupling". Journal of Glaciology 46, n.º 153 (2000): 227–38. http://dx.doi.org/10.3189/172756500781832891.
Texto completo da fonteKreuzer, Moritz, Ronja Reese, Willem Nicholas Huiskamp, Stefan Petri, Torsten Albrecht, Georg Feulner e Ricarda Winkelmann. "Coupling framework (1.0) for the PISM (1.1.4) ice sheet model and the MOM5 (5.1.0) ocean model via the PICO ice shelf cavity model in an Antarctic domain". Geoscientific Model Development 14, n.º 6 (22 de junho de 2021): 3697–714. http://dx.doi.org/10.5194/gmd-14-3697-2021.
Texto completo da fonteStraneo, Fiammetta, Patrick Heimbach, Olga Sergienko, Gordon Hamilton, Ginny Catania, Stephen Griffies, Robert Hallberg et al. "Challenges to Understanding the Dynamic Response of Greenland's Marine Terminating Glaciers to Oceanic and Atmospheric Forcing". Bulletin of the American Meteorological Society 94, n.º 8 (1 de agosto de 2013): 1131–44. http://dx.doi.org/10.1175/bams-d-12-00100.1.
Texto completo da fonte