Artigos de revistas sobre o tema "Immersed structures"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Immersed structures".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Iguchi, T., T. Sugaya, and Y. Kawano. "Silicon-immersed terahertz plasmonic structures." Applied Physics Letters 110, no. 15 (2017): 151105. http://dx.doi.org/10.1063/1.4980018.
Texto completo da fonteGriffith, Boyce E., and Neelesh A. Patankar. "Immersed Methods for Fluid–Structure Interaction." Annual Review of Fluid Mechanics 52, no. 1 (2020): 421–48. http://dx.doi.org/10.1146/annurev-fluid-010719-060228.
Texto completo da fonteStrychalski, Wanda, and Robert D. Guy. "Viscoelastic Immersed Boundary Methods for Zero Reynolds Number Flow." Communications in Computational Physics 12, no. 2 (2012): 462–78. http://dx.doi.org/10.4208/cicp.050211.090811s.
Texto completo da fonteJu, Liehong, Peng Li, and Ji hau Yang. "EXPERIMENTAL RESEARCH ON COEFFICIENT OF WAVE TRANSMISSION THROUGH IMMERSED VERTICAL BARRIER OF OPEN-TYPE BREAKWATER." Coastal Engineering Proceedings 1, no. 32 (2011): 55. http://dx.doi.org/10.9753/icce.v32.structures.55.
Texto completo da fonteCao, Shuai, Chun Hua Xu, Ya Bo Huang, et al. "Wetting Property of Cu-Doped ZnO with Micro-/Nano-Structures." Advanced Materials Research 960-961 (June 2014): 61–64. http://dx.doi.org/10.4028/www.scientific.net/amr.960-961.61.
Texto completo da fonteKoo, Weoncheol, Eun-Hong Min, SangHun Lee, Minju Maeng, and Sanghwan Heo. "EXPERIMENTAL AND NUMERICAL STUDY ON WAVE REDUCTION BY TWO PERMEABLE SUBMERGED BREAKWATERS." Coastal Engineering Proceedings, no. 38 (May 29, 2025): 59. https://doi.org/10.9753/icce.v38.structures.59.
Texto completo da fonteClark, Joseph A., Paul M. Honke, and J. Michael Ellis. "Holographic measurement of power flow in large immersed structures." Journal of the Acoustical Society of America 89, no. 4B (1991): 1977. http://dx.doi.org/10.1121/1.2029748.
Texto completo da fonteBoilevin-Kayl, Ludovic, Miguel A. Fernández, and Jean-Frédéric Gerbeau. "Numerical methods for immersed FSI with thin-walled structures." Computers & Fluids 179 (January 2019): 744–63. http://dx.doi.org/10.1016/j.compfluid.2018.05.024.
Texto completo da fonteBinder, G. "Research on protective coating systems for immersed steel structures." Materials and Corrosion 52, no. 4 (2001): 261–67. http://dx.doi.org/10.1002/1521-4176(200104)52:4<261::aid-maco261>3.0.co;2-3.
Texto completo da fonteFeng, Wenwen, Wenkang Yao, Lin Yuan, et al. "Effect of Pouring Techniques and Funnel Structures on Crucible Metallurgy: Physical and Numerical Simulations." Materials 17, no. 19 (2024): 4920. http://dx.doi.org/10.3390/ma17194920.
Texto completo da fonteUhlig, Manuel R., Simone Benaglia, Ravindra Thakkar, Jeffrey Comer, and Ricardo Garcia. "Atomically resolved interfacial water structures on crystalline hydrophilic and hydrophobic surfaces." Nanoscale 13, no. 10 (2021): 5275–83. http://dx.doi.org/10.1039/d1nr00351h.
Texto completo da fonteSantos, Maria Angela Vaz dos, and Armando Miguel Awruch. "Numerical Analysis of Compressible Fluids and Elastic Structures Interaction." Applied Mechanics Reviews 48, no. 11S (1995): S195—S202. http://dx.doi.org/10.1115/1.3005071.
Texto completo da fonteMEGE, Romain. "ICONE19-43307 Analytical solutions for the study of immersed unanchored structures under seismic loading." Proceedings of the International Conference on Nuclear Engineering (ICONE) 2011.19 (2011): _ICONE1943. http://dx.doi.org/10.1299/jsmeicone.2011.19._icone1943_137.
Texto completo da fonteHao, Jian, Zhilin Li, and Sharon R. Lubkin. "An augmented immersed interface method for moving structures with mass." Discrete & Continuous Dynamical Systems - B 17, no. 4 (2012): 1175–84. http://dx.doi.org/10.3934/dcdsb.2012.17.1175.
Texto completo da fonteBatista, Elismar, Levi Adriano, and Willian Tokura. "Gradient Einstein-type structures immersed into a Riemannian warped product." Journal of Geometry and Physics 176 (June 2022): 104510. http://dx.doi.org/10.1016/j.geomphys.2022.104510.
Texto completo da fonteGoza, Andres, and Tim Colonius. "A strongly-coupled immersed-boundary formulation for thin elastic structures." Journal of Computational Physics 336 (May 2017): 401–11. http://dx.doi.org/10.1016/j.jcp.2017.02.027.
Texto completo da fonteBarcet, Matthieu, William Benguigui, Jérôme Laviéville, et al. "WAVE IMPACT ON BREAKWATER ARMOR BLOCKS USING IBM-DEM CFD COUPLING." Coastal Engineering Proceedings, no. 38 (May 29, 2025): 7. https://doi.org/10.9753/icce.v38.structures.7.
Texto completo da fonteAlderson, John Stewart, Henry Cruickshank, Boudewijn Decrop, and Tijs Cornu. "PASSING VESSEL AND TIDAL FLOW IMPACTS ON SUBMERGED TUNNEL ELEMENTS DURING INSTALLATION." Coastal Engineering Proceedings, no. 38 (May 29, 2025): 53. https://doi.org/10.9753/icce.v38.structures.53.
Texto completo da fonteHuang, Hongyuan, Yao Rong, Xiao Xiao, and Bin Xu. "Vibration Characteristics Analysis of Immersed Tunnel Structures Based on a Viscoelastic Beam Model Embedded in a Fluid-Saturated Soil System Due to a Moving Load." Applied Sciences 13, no. 18 (2023): 10319. http://dx.doi.org/10.3390/app131810319.
Texto completo da fonteViré, A., J. Xiang, and C. C. Pain. "An immersed-shell method for modelling fluid–structure interactions." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 373, no. 2035 (2015): 20140085. http://dx.doi.org/10.1098/rsta.2014.0085.
Texto completo da fonteSidibe, Y., F. Druaux, D. Lefebvre, F. Leon, and G. Maze. "A Noncontact Method for the Detection and Diagnosis of Surface Damage in Immersed Structures." Advances in Acoustics and Vibration 2015 (May 19, 2015): 1–10. http://dx.doi.org/10.1155/2015/429749.
Texto completo da fonteTimalsina, Asim, Gene Hou, and Jin Wang. "Computing Fluid-Structure Interaction by the Partitioned Approach with Direct Forcing." Communications in Computational Physics 21, no. 1 (2016): 182–210. http://dx.doi.org/10.4208/cicp.080815.090516a.
Texto completo da fonteLee, Kwang-Ho, and Do-Sam Kim. "Development of Simplified Immersed Boundary Method for Analysis of Movable Structures." Journal of Korean Society of Coastal and Ocean Engineers 33, no. 3 (2021): 93–100. http://dx.doi.org/10.9765/kscoe.2021.33.3.93.
Texto completo da fonteCao, Yong, Yuchuan Chu, Xiaoshi Zhang, and Xu Zhang. "Immersed finite element methods for unbounded interface problems with periodic structures." Journal of Computational and Applied Mathematics 307 (December 2016): 72–81. http://dx.doi.org/10.1016/j.cam.2016.04.020.
Texto completo da fonteYAJIMA, Shoji, Jiro FUNAKI, and Katsuya HIRATA. "1659 Basic Flow Structures around a Washer Immersed in Uniform Flow." Proceedings of the JSME annual meeting 2007.2 (2007): 305–6. http://dx.doi.org/10.1299/jsmemecjo.2007.2.0_305.
Texto completo da fonteFauci, Lisa J., and Aaron L. Fogelson. "Truncated newton methods and the modeling of complex immersed elastic structures." Communications on Pure and Applied Mathematics 46, no. 6 (1993): 787–818. http://dx.doi.org/10.1002/cpa.3160460602.
Texto completo da fonteSitnikova, N. L., O. E. Philippova, and E. S. Obolonkova. "Kinetically frozen structures in polymer gels immersed in a poor solvent." Macromolecular Symposia 160, no. 1 (2000): 175–82. http://dx.doi.org/10.1002/1521-3900(200010)160:1<175::aid-masy175>3.0.co;2-u.
Texto completo da fonteYan, Ge, Li Yan, and Zhu Xichang. "Accelerated Study of Zinc Mesh Anodes for Reinforced Concrete Structures." Materials Performance 50, no. 2 (2011): 26–28. https://doi.org/10.5006/mp2011_50_2-26.
Texto completo da fonteZHANG, ZHI-QIAN, JIANYAO YAO, and G. R. LIU. "AN IMMERSED SMOOTHED FINITE ELEMENT METHOD FOR FLUID–STRUCTURE INTERACTION PROBLEMS." International Journal of Computational Methods 08, no. 04 (2011): 747–57. http://dx.doi.org/10.1142/s0219876211002794.
Texto completo da fonteLu, Hongduo, Samuel Stenberg, Clifford E. Woodward, and Jan Forsman. "Structural transitions at electrodes, immersed in simple ionic liquid models." Soft Matter 17, no. 14 (2021): 3876–85. http://dx.doi.org/10.1039/d0sm02167a.
Texto completo da fonteSyed Nuzul Fadzli, S. A., S. Roslinda, and Firuz Zainuddin. "Sol Gel Synthesis and In Vitro Evaluation of Apatite Forming Ability of Silica-Based Composite Glass in SBF." Key Engineering Materials 660 (August 2015): 125–31. http://dx.doi.org/10.4028/www.scientific.net/kem.660.125.
Texto completo da fonteZhu, Yao-Yu, Shen-You Song, Wei Liu, Ya-Wei Guo, Li Zhu, and Jia-Xin Li. "Experimental and Numerical Investigation of the Cross-Sectional Mechanical Behavior of a Steel–Concrete Immersed Tube Tunnel." Buildings 12, no. 10 (2022): 1553. http://dx.doi.org/10.3390/buildings12101553.
Texto completo da fonteZhou, Xiaojie, Qinghua Liang, Yueyu Zhang, Zhongxian Liu, and Ying He. "Three-Dimensional Nonlinear Seismic Response of Immersed Tunnel in Horizontally Layered Site under Obliquely Incident SV Waves." Shock and Vibration 2019 (July 24, 2019): 1–17. http://dx.doi.org/10.1155/2019/3131502.
Texto completo da fonteWang, Sheldon. "A Revisit of Implicit Monolithic Algorithms for Compressible Solids Immersed Inside a Compressible Liquid." Fluids 6, no. 8 (2021): 273. http://dx.doi.org/10.3390/fluids6080273.
Texto completo da fonteRizzo, Piervincenzo, Jian-Gang Han, and Xiang-Lei Ni. "Structural Health Monitoring of Immersed Structures by Means of Guided Ultrasonic Waves." Journal of Intelligent Material Systems and Structures 21, no. 14 (2010): 1397–407. http://dx.doi.org/10.1177/1045389x10384170.
Texto completo da fonteNorouzi, Hamid R., Maryam Tahmasebpoor, Reza Zarghami, and Navid Mostoufi. "Multi-scale analysis of flow structures in fluidized beds with immersed tubes." Particuology 21 (August 2015): 99–106. http://dx.doi.org/10.1016/j.partic.2015.01.005.
Texto completo da fonteMege, Romain. "Pseudo-analytical model for sliding immersed structures under time-history earthquake loadings." Bulletin of Earthquake Engineering 15, no. 3 (2016): 1297–318. http://dx.doi.org/10.1007/s10518-016-9990-8.
Texto completo da fonteChern, Ming-Jyh, Wei-Cheng Hsu, and Tzyy-Leng Horng. "Numerical Prediction of Hydrodynamic Loading on Circular Cylinder Array in Oscillatory Flow Using Direct-Forcing Immersed Boundary Method." Journal of Applied Mathematics 2012 (2012): 1–16. http://dx.doi.org/10.1155/2012/505916.
Texto completo da fonteYuchao, Ma, Mo Juan, Yu Jinshan, Li Xiang, and Zheng Zhongyuan. "Study on Sound Field Distribution Rule for Tank Structures of Large Oil-immersed Transformers." E3S Web of Conferences 233 (2021): 01021. http://dx.doi.org/10.1051/e3sconf/202123301021.
Texto completo da fonteValenti, Robert, Alex Brudno, Michael Bertoulin, and Ian Davis. "Fort Point Channel: Concrete Immersed-Tube and Ventilation Building Design." Transportation Research Record: Journal of the Transportation Research Board 1541, no. 1 (1996): 147–52. http://dx.doi.org/10.1177/0361198196154100119.
Texto completo da fonteJaiswal, J. P., and R. H. Ojha. "Some properties of K-contact Riemannian manifolds admitting a semi-symmetric non-metric connection." Filomat 24, no. 4 (2010): 9–16. http://dx.doi.org/10.2298/fil1004009j.
Texto completo da fonteAlamoudi, Ruaa A., and Sawsan T. Abu Zeid. "Effect of Irrigants on the Push-Out Bond Strength of Two Bioceramic Root Repair Materials." Materials 12, no. 12 (2019): 1921. http://dx.doi.org/10.3390/ma12121921.
Texto completo da fonteCOPOS, CALINA A., and ROBERT D. GUY. "A POROUS VISCOELASTIC MODEL FOR THE CELL CYTOSKELETON." ANZIAM Journal 59, no. 4 (2018): 472–98. http://dx.doi.org/10.1017/s1446181118000081.
Texto completo da fonteLiao, Xin, Wenda Zhang, Jiannan Chen, et al. "Deterioration and Oxidation Characteristics of Black Shale under Immersion and Its Impact on the Strength of Concrete." Materials 13, no. 11 (2020): 2515. http://dx.doi.org/10.3390/ma13112515.
Texto completo da fonteIovane, Giacomo, Hayeon Kim, Domenico Tizzano, et al. "Cementitious materials with biological additive for enhanced durability in marine environment." ce/papers 6, no. 5 (2023): 251–57. http://dx.doi.org/10.1002/cepa.1992.
Texto completo da fonteJunge, Michael, Dominik Brunner, and Lothar Gaul. "Solution of the FE-BE Coupled Eigenvalue Problem for Immersed Ship-like Structures." Journal of The Japan Institute of Marine Engineering 46, no. 1 (2011): 15–27. http://dx.doi.org/10.5988/jime.46.15.
Texto completo da fonteBoustani, Jonathan, Michael F. Barad, Cetin C. Kiris, and Christoph Brehm. "An immersed boundary fluid–structure interaction method for thin, highly compliant shell structures." Journal of Computational Physics 438 (August 2021): 110369. http://dx.doi.org/10.1016/j.jcp.2021.110369.
Texto completo da fonteSartori, Michael A., and Joseph A. Clark. "Animated visualization of structural dynamics and acoustic radiation associated with immersed hull structures." Journal of the Acoustical Society of America 95, no. 5 (1994): 2903. http://dx.doi.org/10.1121/1.409278.
Texto completo da fonteVashishth, Anil K., and Vishakha Gupta. "Scattering of ultrasonic waves from porous piezoelectric multilayered structures immersed in a fluid." Smart Materials and Structures 21, no. 12 (2012): 125002. http://dx.doi.org/10.1088/0964-1726/21/12/125002.
Texto completo da fonteGrétarsson, Jón Tómas, and Ron Fedkiw. "Fully conservative leak-proof treatment of thin solid structures immersed in compressible fluids." Journal of Computational Physics 245 (July 2013): 160–204. http://dx.doi.org/10.1016/j.jcp.2013.02.017.
Texto completo da fonte