Literatura científica selecionada sobre o tema "Infeasibility"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Infeasibility".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Infeasibility"
Schweikard, Achim, e Fabian Schwarzer. "Detecting geometric infeasibility". Artificial Intelligence 105, n.º 1-2 (outubro de 1998): 139–59. http://dx.doi.org/10.1016/s0004-3702(98)00076-9.
Texto completo da fonteArtemov, Sergei, e Roman Kuznets. "Logical omniscience as infeasibility". Annals of Pure and Applied Logic 165, n.º 1 (janeiro de 2014): 6–25. http://dx.doi.org/10.1016/j.apal.2013.07.003.
Texto completo da fonteGREENBERG, HARVEY J. "Diagnosing Infeasibility in Min-cast Network Flow Problems Part I: Dual Infeasibility". IMA Journal of Management Mathematics 1, n.º 2 (1986): 99–109. http://dx.doi.org/10.1093/imaman/1.2.99.
Texto completo da fonteGREENBERG, HARVEY J. "Diagnosing Infeasibility in Min-cost Network Flow Problems Part II: Primal Infeasibility". IMA Journal of Management Mathematics 2, n.º 1 (1988): 39–50. http://dx.doi.org/10.1093/imaman/2.1.39.
Texto completo da fonteKämpke, Thomas. "The geometry of linear infeasibility". Applied Mathematics and Computation 129, n.º 2-3 (julho de 2002): 317–37. http://dx.doi.org/10.1016/s0096-3003(01)00042-x.
Texto completo da fonteCechlárová, Katarína, e Pavel Dikoxe. "Resolving infeasibility in extremal algebras". Linear Algebra and its Applications 290, n.º 1-3 (março de 1999): 267–73. http://dx.doi.org/10.1016/s0024-3795(98)10248-3.
Texto completo da fonteAlmeida, Euclides, e Argimiro R. Secchi. "Solving dynamic optimization infeasibility problems". Computers & Chemical Engineering 36 (janeiro de 2012): 227–46. http://dx.doi.org/10.1016/j.compchemeng.2011.07.003.
Texto completo da fonteLiu, Minghui, e Gábor Pataki. "Exact duals and short certificates of infeasibility and weak infeasibility in conic linear programming". Mathematical Programming 167, n.º 2 (10 de abril de 2017): 435–80. http://dx.doi.org/10.1007/s10107-017-1136-5.
Texto completo da fonteAndersen, Kent, Quentin Louveaux e Robert Weismantel. "Certificates of linear mixed integer infeasibility". Operations Research Letters 36, n.º 6 (novembro de 2008): 734–38. http://dx.doi.org/10.1016/j.orl.2008.08.003.
Texto completo da fonteChinneck, John W. "MINOS(IIS): Infeasibility analysis using MINOS". Computers & Operations Research 21, n.º 1 (janeiro de 1994): 1–9. http://dx.doi.org/10.1016/0305-0548(94)90057-4.
Texto completo da fonteTeses / dissertações sobre o assunto "Infeasibility"
Brown, Adam. "Infeasibility of solving finite mathematical problems". Thesis, McGill University, 2010. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=86989.
Texto completo da fonteNous avons démontré que le problème quand à prendre des décisions concernant des énoncés mathématiques finis, bien que récursif, est infaisable accordé à n'importe quel modèle de calcul. Plus précisément, nous avons établi un ensemble de problèmes mathématiques ne pouvant être résolus que par des programmes assez long qui suggéreraient la décision finale implicitement, au fil des calculs. Ce fait a d'abord été publié en 1973 par un Hongrois du nom de Michael Makkai, et il sera expliqué en anglais pour la toute première fois ici. Dans ce travail, nous 1) éluciderons la démonstration faite par Makkai basé sur l'adaptation de la première démonstration du théorème incomplétude de Gödel, 2) appuierons les résultats trouvés en 1973 par Makkai et 3) tirerons des conclusions sur ses résultats en utilisant la théorie de la complexité et la théorie algorithmique de l'information, aussi appelée complexité de Kolmogorov.
Call, Mikael. "Shortest Path Routing Modelling, Infeasibility and Polyhedra". Doctoral thesis, Linköpings universitet, Optimeringslära, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-85547.
Texto completo da fonteTran, Ngoc Nguyen. "Infeasibility detection and regularization strategies in nonlinear optimization". Thesis, Limoges, 2018. http://www.theses.fr/2018LIMO0059/document.
Texto completo da fonteThis thesis is devoted to the study of numerical algorithms for nonlinear optimization. On the one hand, we propose new strategies for the rapid infeasibility detection. On the other hand, we analyze the local behavior of primal-dual algorithms for the solution of singular problems. In the first part, we present a modification of an augmented Lagrangian algorithm for equality constrained optimization. The quadratic convergence of the new algorithm in the infeasible case is theoretically and numerically demonstrated. The second part is dedicated to extending the previous result to the solution of general nonlinear optimization problems with equality and inequality constraints. We propose a modification of a mixed logarithmic barrier-augmented Lagrangian algorithm. The theoretical convergence results and the numerical experiments show the advantage of the new algorithm for the infeasibility detection. In the third part, we study the local behavior of a primal-dual interior point algorithm for bound constrained optimization. The local analysis is done without the standard assumption of the second-order sufficient optimality conditions. These conditions are replaced by a weaker assumption based on a local error bound condition. We propose a regularization technique of the Jacobian matrix of the optimality system. We then demonstrate some boundedness properties of the inverse of these regularized matrices, which allow us to prove the superlinear convergence of our algorithm. The last part is devoted to the local convergence analysis of the primal-dual algorithm used in the first two parts of this thesis. In practice, it has been observed that this algorithm converges rapidly even in the case where the constraints do not satisfy the Mangasarian-Fromovitz constraint qualification. We demonstrate the superlinear and quadratic convergence of this algorithm without any assumption of constraint qualification
Vada, Jostein. "Prioritized infeasibility handling in linear model predictive control : optimality and efficiency". Doctoral thesis, Norwegian University of Science and Technology, Faculty of Information Technology, Mathematics and Electrical Engineering, 2000. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-1425.
Texto completo da fonteEnns, Linda C. "Root pressure, a reexamination of the infeasibility of the osmometer mechanism". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp01/MQ36926.pdf.
Texto completo da fonteBanjac, Goran. "Operator splitting methods for convex optimization : analysis and implementation". Thesis, University of Oxford, 2018. https://ora.ox.ac.uk/objects/uuid:17ac73af-9fdf-4cf6-a946-3048da3fc9c2.
Texto completo da fonteAguilera, Cabanas Jorge Antonio. "Robustesse et visualisation de production de mélanges". Thesis, Grenoble, 2011. http://www.theses.fr/2011GRENM052/document.
Texto completo da fonteThe oil blending process (BP) consists in determining the optimal proportions to blend from a set of available components such that the final product fulfills a set of specifications on their properties. Two important characteristics of the blending problem are the hard bounds on the blend's properties and the uncertainty pervading the process. In this work, a real-time optimization method is proposed for producing robust blends while minimizing the blend quality giveaway and the recipe's cost. The method is based on the Robust Optimization techniques and under the assumption that the components properties blend linearly. The blending intrinsic polytopes are exploited in order to measure, visualize and characterize the infeasibility of the BP. A fine analysis of the components bounds modifications is conducted to guide the process towards the ``best`` robust blend. A set of indices and visualizations provide a helpful support for the decision maker
Alami, Mohsen. "Interval Based Parameter Identification for System Biology". Thesis, Linköpings universitet, Reglerteknik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-75161.
Texto completo da fonteDet här examensarbetet studerar problemet med parameteridentifiering för systembiologi. Två metoder har studerats. Metoden med intervallanalys använder union av intervallvektorer som klass av objekt för att manipulera och bilda inre och yttre approximationer av kompakta mängder. Denna metod fungerar väl för modeller givna som ett system av differentialekvationer, men har sina begränsningar, eftersom det analytiska uttrycket för lösningen till differentialekvationen som är nödvändigt att känna till för att kunna formulera inkluderande funktioner, inte alltid är tillgängliga. Den andra studerade metoden, använder SDP-relaxering, som ett sätt att komma runt problemet med olinjäritet och icke-konvexitet i systemet. Denna metod, implementerad i toolboxen bio.SDP, utgår från system av differensekvationer, framtagna via Eulers diskretiserings metod. Diskretiseringsmetoden innehåller fel och osäkerhet, vilket gör det nödvändigt att estimera en gräns för felets storlek. Några felestimeringsmetoder har studerats. Metoden med ∞-norm optimering, också kallat worst-case-∞-norm är tillämpat på ett-stegs felestimerings metoder. Metoderna har illustrerats genom att lösa två system biologiska problem och de accepterade parametermängderna, benämnt SCP, har jämförts och diskuterats.
Sinop, Ali Kemal. "Graph Partitioning and Semi-definite Programming Hierarchies". Research Showcase @ CMU, 2012. http://repository.cmu.edu/dissertations/145.
Texto completo da fonteSahraoui, Youcef. "Short-term hydropower production scheduling : feasibility and modeling". Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLX025/document.
Texto completo da fonteIn the electricity industry, and more specifically at the French utility company EDF, mathematical optimization is used to model and solve problems related to electricity production management.To name a few applications: planning for capacity investments, managing depletion risks of hydro-reservoirs, scheduling outages and refueling for nuclear plants.More specifically, hydroelectricity is a renewable, cheap, flexible but limited source of energy.Harnessing hydroelectricity is thus critical for electricity production management.We are interested in Mixed-Integer Non-Linear Programming (MINLP) optimization problems.They are optimization problems whose decision variables can be continuous or discrete and the functions to express the objective and constraints can be linear or non-linear.The non-linearities and the combinatorial aspect induced by the integer variables make these problems particularly difficult to solve.Indeed existing methods cannot always solve large MINLP problems to the optimum within limited computational timeframes.Prior to solution performance, feasibility is preliminary challenge to tackle since we want to ensure the MINLP problems to solve admit feasible solutions.When infeasibilities occur in complex models, it is useful but not trivial to analyze their causes.Also, certifying the exactness of the results compounds the difficulty of solving MINLP problems as solution methods are generally implemented in floating-point arithmetic, which may lead to approximate precision.In this thesis, we work on two optimization problems - a Mixed-Integer Linear Program (MILP) and a Non-Linear Program (NLP) - related to Short-Term Hydropower production Scheduling (STHS).Given finite resources of water in reservoirs, the purpose of STHS is to prescribe production schedules with largest payoffs that are compatible with technical specifications of the hydroelectric plants.While water volumes, water flows, and electric powers can be represented with continuous variables, commitment statuses of turbine units usually have to be formulated with binary variables.Non-linearities commonly originate from the Input/Output functions that model generated power according to water volume and water flow.We decide to focus on two distinguished problems: a MILP with linear discrete features and a NLP with non-linear continuous features.In the second chapter, we deal with feasibility issues of a real-world MILP STHS.Compared with a standard STHS problem, the model features two additional specifications:discrete operational points of the power-flow curve and mid-horizon and final strict targets for reservoir levels.Issues affecting real-world data and numerical computing, together with specific model features, make our problem harder to solve and often infeasible.Given real-world instances, we reformulate the model to make the problem feasible.We follow a step-by-step approach to exhibit and cope with one source of infeasility at a time, namely numerical errors and model infeasibilities.Computational results show the effectiveness of the approach on an original test set of 66 real-world instances that demonstrated a high occurrence of infeasibilities.The third chapter is about the transposition of the Multiplicative Weights Update algorithm to the (nonconvex) nonlinear and mixed integer nonlinear programming setting, based on a particular parametrized reformulation of the problem - denoted pointwise.We define desirable properties for deriving pointwise reformulation and provide generic guidelines to transpose the algorithm step-by-step.Unlike most metaheuristics, we show that our MWU metaheuristic still retains a relative approximation guarantee in the NLP and MINLP settings.We benchmark it computationally to solve a hard NLP STHS.We find it compares favorably to the well-known Multi-Start method, which, on the other hand, offers no approximation guarantee
Livros sobre o assunto "Infeasibility"
Feasibility and infeasibility in optimization: Algorithms and computational methods. New York: Springer, 2008.
Encontre o texto completo da fonteFeasibility and Infeasibility in Optimization. Boston, MA: Springer US, 2008. http://dx.doi.org/10.1007/978-0-387-74932-7.
Texto completo da fonteChinneck, John W. W. Feasibility and Infeasibility in Optimization : : Algorithms and Computational Methods. Springer, 2010.
Encontre o texto completo da fonteThe Global Free Trade Error: The Infeasibility of Ricardo's Comparative Advantage Theory. Routledge, 2017.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Infeasibility"
Felsner, Stefan, e Nicole Morawe. "Infeasibility of Systems of Halfspaces". In Algorithms and Combinatorics, 405–24. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-55566-4_18.
Texto completo da fonteBuldas, Ahto, Aleksandr Lenin, Jan Willemson e Anton Charnamord. "Simple Infeasibility Certificates for Attack Trees". In Advances in Information and Computer Security, 39–55. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-64200-0_3.
Texto completo da fonteGärling, Tommy. "The Feasible Infeasibility of Activity Scheduling". In Human Behaviour and Traffic Networks, 231–50. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-07809-9_10.
Texto completo da fonteLiffiton, Mark H., e Ammar Malik. "Enumerating Infeasibility: Finding Multiple MUSes Quickly". In Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems, 160–75. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-38171-3_11.
Texto completo da fonteChinneck, John W., e Wojtek Michalowski. "MOLP Formulation Assistance Using LP Infeasibility Analysis". In Multi-Objective Programming and Goal Programming, 87–106. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-87561-8_8.
Texto completo da fonteMencía, Raúl, Carlos Mencía e Ramiro Varela. "Repairing Infeasibility in Scheduling via Genetic Algorithms". In From Bioinspired Systems and Biomedical Applications to Machine Learning, 254–63. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-19651-6_25.
Texto completo da fonteRay, Tapabrata, Hemant Kumar Singh, Amitay Isaacs e Warren Smith. "Infeasibility Driven Evolutionary Algorithm for Constrained Optimization". In Constraint-Handling in Evolutionary Optimization, 145–65. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-00619-7_7.
Texto completo da fonteKatz, Jonathan, Aishwarya Thiruvengadam e Hong-Sheng Zhou. "Feasibility and Infeasibility of Adaptively Secure Fully Homomorphic Encryption". In Public-Key Cryptography – PKC 2013, 14–31. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-36362-7_2.
Texto completo da fonteDachman-Soled, Dana, Nils Fleischhacker, Jonathan Katz, Anna Lysyanskaya e Dominique Schröder. "Feasibility and Infeasibility of Secure Computation with Malicious PUFs". In Advances in Cryptology – CRYPTO 2014, 405–20. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-44381-1_23.
Texto completo da fonteSubramani, K., e Piotr Wojciechowski. "Read-Once Certification of Linear Infeasibility in UTVPI Constraints". In Lecture Notes in Computer Science, 578–93. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-14812-6_36.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Infeasibility"
Delahaye, Mickaël. "IPEG: Utilizing Infeasibility". In 2011 IEEE Fourth International Conference on Software Testing, Verification and Validation Workshops (ICSTW). IEEE, 2011. http://dx.doi.org/10.1109/icstw.2011.91.
Texto completo da fonteSuleiman, Wael, Fumio Kanehiro e Eiichi Yoshida. "Infeasibility-free inverse kinematics method". In 2015 IEEE/SICE International Symposium on System Integration (SII). IEEE, 2015. http://dx.doi.org/10.1109/sii.2015.7404996.
Texto completo da fonteBudiono, Tri A., e Kok Wai Wong. "Memetic algorithm behavior on timetabling infeasibility". In TENCON 2011 - 2011 IEEE Region 10 Conference. IEEE, 2011. http://dx.doi.org/10.1109/tencon.2011.6129070.
Texto completo da fonteLi, Sihui, e Neil Dantam. "Learning Proofs of Motion Planning Infeasibility". In Robotics: Science and Systems 2021. Robotics: Science and Systems Foundation, 2021. http://dx.doi.org/10.15607/rss.2021.xvii.064.
Texto completo da fonteKhorshid, E., e A. Falah. "Enhancing Infeasibility Detection Method for Mechanical Design Problems". In ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-63651.
Texto completo da fonteSong, Yingbo, Michael E. Locasto, Angelos Stavrou, Angelos D. Keromytis e Salvatore J. Stolfo. "On the infeasibility of modeling polymorphic shellcode". In the 14th ACM conference. New York, New York, USA: ACM Press, 2007. http://dx.doi.org/10.1145/1315245.1315312.
Texto completo da fonteLi, Sihui, e Neil T. Dantam. "Towards General Infeasibility Proofs in Motion Planning*". In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2020. http://dx.doi.org/10.1109/iros45743.2020.9340804.
Texto completo da fonteDimarogonas, Dimos V., e Kostas J. Kyriakopoulos. "Further results on formation infeasibility and velocity alignment". In 2007 46th IEEE Conference on Decision and Control. IEEE, 2007. http://dx.doi.org/10.1109/cdc.2007.4434680.
Texto completo da fonteSharma, Deepak, e Prem Soren. "Infeasibility driven approach for bi-objective evolutionary optimization". In 2013 IEEE Congress on Evolutionary Computation (CEC). IEEE, 2013. http://dx.doi.org/10.1109/cec.2013.6557659.
Texto completo da fonteLi, Dafu, e Na Zhao. "Discussion on the infeasibility study of key projects". In 2011 International Conference on Multimedia Technology (ICMT). IEEE, 2011. http://dx.doi.org/10.1109/icmt.2011.6002760.
Texto completo da fonte