Literatura científica selecionada sobre o tema "Interfacial deformation"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Interfacial deformation".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Interfacial deformation"
Stone, H. A., e L. G. Leal. "The effects of surfactants on drop deformation and breakup". Journal of Fluid Mechanics 220 (novembro de 1990): 161–86. http://dx.doi.org/10.1017/s0022112090003226.
Texto completo da fonteMangipudi, V. S., e M. Tirrell. "Contact-Mechanics-Based Studies of Adhesion between Polymers". Rubber Chemistry and Technology 71, n.º 3 (1 de julho de 1998): 407–48. http://dx.doi.org/10.5254/1.3538490.
Texto completo da fontePelipenko, Jan, Julijana Kristl, Romana Rošic, Saša Baumgartner e Petra Kocbek. "Interfacial rheology: An overview of measuring techniques and its role in dispersions and electrospinning". Acta Pharmaceutica 62, n.º 2 (1 de junho de 2012): 123–40. http://dx.doi.org/10.2478/v10007-012-0018-x.
Texto completo da fonteTAKADA, NAOKI, AKIO TOMIYAMA e SHIGEO HOSOKAWA. "LATTICE BOLTZMANN SIMULATION OF INTERFACIAL DEFORMATION". International Journal of Modern Physics B 17, n.º 01n02 (20 de janeiro de 2003): 179–82. http://dx.doi.org/10.1142/s0217979203017308.
Texto completo da fonteTakahashi, Yasuo, e Michinobu Inoue. "Numerical Study of Wire Bonding—Analysis of Interfacial Deformation Between Wire and Pad". Journal of Electronic Packaging 124, n.º 1 (13 de março de 2001): 27–36. http://dx.doi.org/10.1115/1.1413765.
Texto completo da fonteSamanta, Amit, e Weinan E. "Interfacial diffusion aided deformation during nanoindentation". AIP Advances 6, n.º 7 (julho de 2016): 075002. http://dx.doi.org/10.1063/1.4958299.
Texto completo da fonteHaruki, Sakamaki, Kumagai Ichiro, Oishi Yoshihiko, Tasaka Yuji e Murai Yuichi. "1051 FLOWS AND INTERFACIAL DEFORMATION AROUND A HYDROFOIL BENEATH A FREE SURFACE". Proceedings of the International Conference on Jets, Wakes and Separated Flows (ICJWSF) 2013.4 (2013): _1051–1_—_1051–6_. http://dx.doi.org/10.1299/jsmeicjwsf.2013.4._1051-1_.
Texto completo da fonteWETZEL, ERIC D., e CHARLES L. TUCKER. "Droplet deformation in dispersions with unequal viscosities and zero interfacial tension". Journal of Fluid Mechanics 426 (10 de janeiro de 2001): 199–228. http://dx.doi.org/10.1017/s0022112000002275.
Texto completo da fonteLee, Doojin, e Amy Q. Shen. "Interfacial Tension Measurements in Microfluidic Quasi-Static Extensional Flows". Micromachines 12, n.º 3 (6 de março de 2021): 272. http://dx.doi.org/10.3390/mi12030272.
Texto completo da fonteKomvopoulos, K., e W. Yan. "Three-Dimensional Elastic-Plastic Fractal Analysis of Surface Adhesion in Microelectromechanical Systems". Journal of Tribology 120, n.º 4 (1 de outubro de 1998): 808–13. http://dx.doi.org/10.1115/1.2833783.
Texto completo da fonteTeses / dissertações sobre o assunto "Interfacial deformation"
Hargreaves, Alexander Leighton. "Optical deformation of microdroplets at ultralow interfacial tension". Thesis, Durham University, 2016. http://etheses.dur.ac.uk/11617/.
Texto completo da fonteTze, William tai-Yin. "Effects of Fiberimatiux Interactions on the Interfacial Deformation Micromechanics of Cellulose-Fiberipolymer Composites". Fogler Library, University of Maine, 2003. http://www.library.umaine.edu/theses/pdf/TzeWT2003.pdf.
Texto completo da fonteTsai, Scott. "Magnetic Spheres in Viscous Flows and at Interfaces: Sorting, Coating, and Interfacial Deformation". Thesis, Harvard University, 2012. http://dissertations.umi.com/gsas.harvard:10151.
Texto completo da fonteEngineering and Applied Sciences
Rusli, Rafeadah. "Interfacial micromechanics of natural cellulose whisker polymer nanocomposites using Raman spectroscopy". Thesis, University of Manchester, 2011. https://www.research.manchester.ac.uk/portal/en/theses/interfacial-micromechanics-of-natural-cellulose-whisker-polymer-nanocomposites-using-raman-spectroscopy(2eab8693-78b1-4241-bcfb-f7d2ae39fbf6).html.
Texto completo da fonteZhou, Diwen. "Interfacial dynamics in complex fluids : studies of drop and free-surface deformation in polymer solutions". Thesis, University of British Columbia, 2009. http://hdl.handle.net/2429/17457.
Texto completo da fonteHabibzadeh, Pouya. "Small Scale Plasticity With Confinement and Interfacial Effects". Doctoral thesis, Universite Libre de Bruxelles, 2016. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/226220.
Texto completo da fonteDoctorat en Sciences de l'ingénieur et technologie
info:eu-repo/semantics/nonPublished
Peng, Xuan. "Co-deformation and bonding of multi-component billets with application to Nb-Sn based superconductor processing". Connect to resource, 2005. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1127096847.
Texto completo da fonteTitle from first page of PDF file. Document formatted into pages; contains xix, 182 p.; also includes graphics (some col.). Includes bibliographical references (p. 177-182). Available online via OhioLINK's ETD Center
Strömbro, Jessica. "Micro-mechanical mechanisms for deformation in polymer-material structures". Doctoral thesis, KTH, Hållfasthetslära (Inst.), 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4626.
Texto completo da fonteQC 20100910
Abi, Chebel Nicolas. "Dynamique et rhéologie interfaciales à haute fréquence d'une goutte oscillante". Thesis, Toulouse, INPT, 2009. http://www.theses.fr/2009INPT043G/document.
Texto completo da fonteWe present an experimental study of oscillating drop interfacial dynamics at a wide frequency range, especially at high frequency. A characterization method of drops oscillation dynamics has been developed. The oscillations are generated by imposing low amplitude periodic variation of volume to a drop which is attached to a capillary tip. The present method is based on the identification of the drop eigenmodes and the determination of their frequencies and damping rates. It has been applied to characterize several liquid-liquid systems. Three types of interface have been identified. For interfaces of type 1 (heptane/water without added surfactant), each eigenmode is modelled by a weakly damped linear oscillator. Eigenfrequencies and damping rates are well predicted by the linear theory. Interfaces of Types 2 and 3 are obtained by adding crude oil to the disperse phase. Oil native surfactants (asphaltenes, resins) adsorb on the drop interface and provide the latter with viscoelastic behaviour. For young interfaces (type 2 with aging time below 20 minutes), eigenfrequencies remain well predicted by the theory, which deals with non contaminated interfaces, whereas the measured damping rates are significantly higher than the theoretical values. On the other hand, aged interfaces (type 3) exhibit different eigenmodes, of which eigenfrequencies are much higher than the resonance frequencies measured for the young interfaces. At high frequency, the dynamics of aged interfaces are governed by the elasticity of the network constituted by the crude oil amphiphilic species, while the dynamics of young interfaces are governed by interfacial tension. Freely decaying oscillations of a rising drop in a liquid at rest without added surfactant were also considered. Measured frequencies for the first four eigenmodes are in good agreement with the linear theory. However, measured damping rates are much higher than the theoretical rates for non contaminated interfaces. In fact, residual adsorbed species at the heptane/water interface induce Marangoni effects and thus gradients of interfacial tension. Therefore, vorticity production within the boundary layers is enhanced, which explains the observed increase of the oscillation damping rates
Zhang, Hao. "Écoulement des fluides et déformation interfaciale : nano-rhéologie et force de portance". Electronic Thesis or Diss., Bordeaux, 2025. http://www.theses.fr/2025BORD0027.
Texto completo da fonteThis thesis investigates the interplay between fluid flow and interfacial deformation using Atomic Force Microscopy (AFM). First, AFM was employed to explore the resonant thermal capillary fluctuations (RTCF) of bubble and drop surfaces, enabling the measurement of surface elasticity and bulk viscosity in surfactant-laden air/water interfaces and polymer solutions. These measurements extended the frequency range for rheological investigations, effectively overcoming the limitations of classical rheometers.Next, we introduced a non-contact method to assess the mechanical properties of living cells based on the elastohydrodynamic (EHD) interaction between the thermal vibrations of the AFM cantilever and the cell deformations. This method enabled the precise determination of the elastic modulus of a living cell for different frequencies.Finally, we conducted the first direct and quantitative measurement of the lift force acting on a sphere moving along a liquid-liquid interface. This force, arising from the coupling between viscous flow and capillary deformation of the interface, was measured as a function of the distance between the sphere and the interface using an atomic force microscope (AFM). We investigated various liquid interfaces, working frequencies, sliding velocities, and two different sphere radii. The findings provide valuable insights into interfacial phenomena and enhance the understanding of interactions between fluid flow and soft interfaces
Livros sobre o assunto "Interfacial deformation"
Thermocapillary flow with evaporation and condensation at low gravit. [Washington, DC: National Aeronautics and Space Administration, 1995.
Encontre o texto completo da fonteKudinov, V. V., N. V. Korneeva e I. K. Krylov. Effect of components on the properties of composite materials. Nauka Publishers, 2021. http://dx.doi.org/10.7868/9785020408654.
Texto completo da fonteCapítulos de livros sobre o assunto "Interfacial deformation"
Aust, K. T., U. Erb e G. Palumbo. "Interfacial Structures and Properties". In Mechanical Properties and Deformation Behavior of Materials Having Ultra-Fine Microstructures, 107–28. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1765-4_5.
Texto completo da fonteBuisson, M., E. Patoor e M. Berveiller. "Constitutive Equations for Deformations Induced by Interfacial Motions". In Anisotropy and Localization of Plastic Deformation, 536–39. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3644-0_124.
Texto completo da fonteBalasubramaniam, R. "Unsteady Thermocapillary Flow and Free Surface Deformation in a Thin Liquid Layer". In Interfacial Fluid Dynamics and Transport Processes, 201–12. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-45095-5_10.
Texto completo da fonteMoran, B., M. Gosz e J. D. Achenbach. "Effect of a Viscoelastic Interfacial Zone on the Mechanical Behavior and Failure of Fiber-Reinforced Composites". In Inelastic Deformation of Composite Materials, 35–49. New York, NY: Springer New York, 1991. http://dx.doi.org/10.1007/978-1-4613-9109-8_2.
Texto completo da fonteShibutani, Yoji, Hiroshi Kitagawa e Takayuki Nakamura. "Growth of interfacial inhomogeneous deformation in thin laminated material subjected to biaxial tension". In Large Plastic Deformations, 261–69. London: Routledge, 2021. http://dx.doi.org/10.1201/9780203749173-29.
Texto completo da fonteBarrett, Christopher, e Haitham El Kadiri. "The Deformation Gradient of Interfacial Defects on Twin-like Interfaces". In Magnesium Technology 2015, 121–25. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2015. http://dx.doi.org/10.1002/9781119093428.ch24.
Texto completo da fonteZinemanas, Daniel, e Avinoam Nir. "A Dynamic Free Surface Deformation Driven by Anisotropic Interfacial Forces". In Variational Methods for Free Surface Interfaces, 165–72. New York, NY: Springer New York, 1987. http://dx.doi.org/10.1007/978-1-4612-4656-5_19.
Texto completo da fonteBarrett, Christopher, e Haitham El Kadiri. "The Deformation Gradient of Interfacial Defects on Twin-like Interfaces". In Magnesium Technology 2015, 121–25. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-48185-2_24.
Texto completo da fonteZeng, Tongyan, Essam F. Abo-Serie, Manus Henry e James Jewkes. "Thermal Optimisation Model for Cooling Channel Design Using the Adjoint Method in 3D Printed Aluminium Die-Casting Tools". In Springer Proceedings in Energy, 333–40. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-30960-1_31.
Texto completo da fonteHagiwara, Yoshimichi. "Numerical Simulation of the Velocity Fluctuation and the Interfacial Deformation of Liquid-Liquid Dispersed Two-Phase Flow". In Fluid Mechanics and Its Applications, 179–83. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0457-9_34.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Interfacial deformation"
Váradi, Károly, Zoltán Néder, Klaus Friedrich e Joachim Flöck. "Finite Element Contact, Stress and Strain Analysis of a Composite Fibre-Matrix Micro System Subjected to Ball Indentation". In ASME 1997 International Mechanical Engineering Congress and Exposition, 23–36. American Society of Mechanical Engineers, 1997. http://dx.doi.org/10.1115/imece1997-1340.
Texto completo da fonteIto, Hideaki, Tsutomu Ezumi, Susumu Takahashi e Kazuo Sato. "Impact shearing deformation behavior of interfacial crack in ENF test specimen". In 24th International Congress on High-Speed Photography and Photonics, editado por Kazuyoshi Takayama, Tsutomo Saito, Harald Kleine e Eugene V. Timofeev. SPIE, 2001. http://dx.doi.org/10.1117/12.424261.
Texto completo da fonteJenn-Ming Song, Chien-Wei Su, Yi-Shao Lai e Ying-Ta Chiu. "Time dependent deformation behavior of interfacial intermetallic compounds in electronic solder joints". In 2009 4th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT). IEEE, 2009. http://dx.doi.org/10.1109/impact.2009.5382227.
Texto completo da fonteHeffes, M. J., e H. F. Nied. "Analysis of Interface Cracking in Flip Chip Packages With Viscoplastic Solder Deformation". In ASME 2003 International Electronic Packaging Technical Conference and Exhibition. ASMEDC, 2003. http://dx.doi.org/10.1115/ipack2003-35346.
Texto completo da fonteHandoko, R. A., J. L. Beuth, M. J. Stiger, F. S. Pettit e G. H. Meier. "Mechanisms for Interfacial Toughness Loss in Thermal Barrier Coating Systems". In ASME 2000 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2000. http://dx.doi.org/10.1115/imece2000-2685.
Texto completo da fonteSharifi Kia, Danial, Shahrzad Towfighian e Congrui Jin. "Predicting the Output of a Triboelectric Energy Harvester Undergoing Mechanical Pressure". In ASME 2016 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/smasis2016-9157.
Texto completo da fonteHossein, Mohammad A., Yue Zhang e Arend van der Zande. "Three-dimensional deformation and stretchable photonics enabled by interfacial slip in 2D material heterostructures". In Physical Chemistry of Semiconductor Materials and Interfaces IX, editado por Daniel Congreve, Christian Nielsen e Andrew J. Musser. SPIE, 2020. http://dx.doi.org/10.1117/12.2567539.
Texto completo da fonteUtiugov, Grigorii, e Vladimir Chirkov. "The Change in Interfacial Tension Over Time and Its Effect on the Droplet Deformation Dynamics". In 2022 IEEE 21st International Conference on Dielectric Liquids (ICDL). IEEE, 2022. http://dx.doi.org/10.1109/icdl49583.2022.9830945.
Texto completo da fonteSeol, Myeong-Lok, Jin-Woo Han, Jong-Ho Woo, Dong-Il Moon, Jee-Yeon Kim e Yang-Kyu Choi. "Comprehensive analysis of deformation of interfacial micro-nano structure by applied force in triboelectric energy harvester". In 2014 IEEE International Electron Devices Meeting (IEDM). IEEE, 2014. http://dx.doi.org/10.1109/iedm.2014.7047010.
Texto completo da fonteYang, J., e K. Komvopoulos. "A Mechanics Approach to Static Friction of Elastic-Plastic Fractal Surfaces". In ASME/STLE 2004 International Joint Tribology Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/trib2004-64271.
Texto completo da fonteRelatórios de organizações sobre o assunto "Interfacial deformation"
Hsiung, L. Interfacial Control of Deformation Twinning in Creep-Deformed TiAl/Ti3Al Nanolaminate. Office of Scientific and Technical Information (OSTI), novembro de 2004. http://dx.doi.org/10.2172/15014527.
Texto completo da fonteDEFORMATION OF STEEL-BAMBOO COMPOSITE BEAM CONSIDERING THE EFFECT OF INTERFACIAL SLIPPAGE. The Hong Kong Institute of Steel Construction, setembro de 2018. http://dx.doi.org/10.18057/ijasc.2018.14.3.1.
Texto completo da fonte